
Progress® DataDirect® for
ODBC for Oracle™ Wire
Protocol Driver
User's Guide and Reference

Release 8.0.2

Copyright

© 2020 Progress Software Corporation and/or one of its subsidiaries or affiliates. All
rights reserved.
These materials and all Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in
these materials to specific platforms supported are subject to change.

Corticon, DataDirect (and design), DataDirect Cloud, DataDirect Connect, DataDirect Connect64, DataDirect
XML Converters, DataDirect XQuery, DataRPM, Defrag This, Deliver More Than Expected, Icenium, Ipswitch,
iMacros, Kendo UI, Kinvey, MessageWay, MOVEit, NativeChat, NativeScript, OpenEdge, Powered by Progress,
Progress, Progress Software Developers Network, SequeLink, Sitefinity (and Design), Sitefinity, SpeedScript,
Stylus Studio, TeamPulse, Telerik, Telerik (and Design), Test Studio, WebSpeed, WhatsConfigured,
WhatsConnected, WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one
of its affiliates or subsidiaries in the U.S. and/or other countries. Analytics360, AppServer, BusinessEdge,
DataDirect Autonomous REST Connector, DataDirect Spy, SupportLink, DevCraft, Fiddler, iMail, JustAssembly,
JustDecompile, JustMock, NativeScript Sidekick, OpenAccess, ProDataSet, Progress Results, Progress
Software, ProVision, PSE Pro, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer,
SmartWindow, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Updated: 2020/07/27

3Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.24

Copyright

Table of Contents

Preface..13
Welcome to the Progress DataDirect for ODBC Oracle Wire Protocol Driver: Version 8.0.2................13

What's New in this Release?..14

Conventions Used in This Guide..18

About the Product Documentation..19

Contacting Technical Support...20

Getting Started...23
Configuring and Connecting on Windows...24

Configuring a Data Source..24

Testing the Connection..25

Configuring and Connecting on UNIX and Linux ...25

Environment Configuration..25

Test Loading the Driver..26

Configuring a Data Source in the System Information File..26

Testing the Connection..27

Configuring and Connecting on macOS...28

iODBC Driver Manager ...28

Configuring a Data Source ...28

Testing the Connection ...29

Accessing Data With Third-Party Applications..30

What Is ODBC?..31
How Does It Work?...32

Why Do Application Developers Need ODBC?..32

About the Oracle Wire Protocol Driver...33
Driver Requirements...34

ODBC Compliance...34

Support for Multiple Environments...35

Support for Windows Environments...35

Support for UNIX and Linux Environments..37

Support for macOS Environments...42

Version String Information..43

getFileVersionString Function..45

Data Types..45

XMLType..46

5Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Contents

Retrieving Data Type Information...48

Isolation and Lock Levels Supported..49

Using Parameter Arrays..49

Supported Features...51
Unicode Support...51

Using IP Addresses..52

Number of Connections and Statements Supported..52

Support for Oracle RAC..52

SQL Support...53

MTS Support..53

OS Authentication...53

Stored Procedure Results..53

Support of Materialized Views..54

Using the Driver...55
Configuring and Connecting to Data Sources..56

Configuring the Product on UNIX/Linux...56

Configuring the Product on macOS...65

Data Source Configuration on Windows..75

Using a Connection String...113

Using a Logon Dialog Box...113

Performance Considerations..115

Using LDAP..119

Connecting through a proxy server...119

Oracle Connection Manager ...121

Unexpected Characters..122

Using Failover...123

Connection Failover...124

Extended Connection Failover...125

Select Connection Failover..126

Guidelines for Primary and Alternate Servers...127

Using Client Load Balancing ...127

Using Connection Retry...128

Configuring Failover-Related Options..128

Using Client Information...132

How Databases Store Client Information...132

Storing Client Information..132

Using Security..133

Authentication..133

Data Encryption Across the Network...137

Data Encryption and Integrity ...137

Summary of Security-Related Options..141

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.26

Contents

Using DataDirect Connection Pooling..145

Creating a Connection Pool...146

Adding Connections to a Pool..146

Removing Connections from a Pool..146

Handling Dead Connections in a Pool...147

Connection Pool Statistics...148

Summary of Pooling-Related Options...148

Using DataDirect Bulk Load...149

Bulk Export and Load Methods...150

Exporting Data from a Database...151

Bulk Loading to a Database...152

The Bulk Load Configuration File ...153

Sample Applications..156

Character Set Conversions..156

External Overflow Files..156

Limitations..157

Summary of Related Options for DataDirect Bulk Load..157

Using Bulk Load for Batch Inserts..158

Determining the Bulk Load Protocol..158

Limitations..159

Summary of Related Options for Bulk Load for Batch Inserts ..159

Persisting a Result Set as an XML Data File..160

Using the Windows XML Persistence Demo Tool..160

Using the UNIX/Linux XML Persistence Demo Tool..162

Troubleshooting...163
Diagnostic Tools..163

ODBC Trace...163

The Test Loading Tool..167

ODBC Test...168

iODBC Demo and iODBC Test..168

The Example Application...168

Other Tools...168

Error Messages..169

Troubleshooting..170

Setup/Connection Issues...170

Interoperability Issues..172

Performance Issues...173

Connection Option Descriptions..175
Accounting Info...183

Action..184

AllowedOpenSSLVersions..184

7Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Contents

Alternate Servers..186

Application Name...186

Application Using Threads..187

Array Size...188

Authentication Method..188

Batch Size..189

Bulk Binary Threshold..190

Bulk Character Threshold...191

Bulk Options...192

Cached Cursor Limit...193

Cached Description Limit..193

Catalog Functions Include Synonyms..194

Catalog Options..195

Client Host Name...195

Client ID..196

Client User..197

Connection Pooling...198

Connection Reset...198

Connection Retry Count...199

Connection Retry Delay..200

Credentials Wallet Entry...201

Credentials Wallet Path..202

Crypto Protocol Version..203

CryptoLibName..204

Data Integrity Level...205

Data Integrity Types..206

Data Source Name...207

Default Buffer Size for Long/LOB Columns (in Kb)...207

Describe at Prepare..208

Description..208

Edition Name..209

Enable Bulk Load...210

Enable N-CHAR Support..211

Enable Scrollable Cursors..212

Enable Server Result Cache..212

Enable SQLDescribeParam..213

Enable Static Cursors for Long Data..214

Enable Timestamp with Timezone..214

Encryption Level...215

Encryption Method...216

Encryption Types..217

Failover Granularity...218

Failover Mode...219

Failover Preconnect..220

Fetch TSWTZ as Timestamp..220

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.28

Contents

Field Delimiter...221

GSS Client Library..222

Host ...222

Host Name In Certificate..223

IANAAppCodePage..224

Impersonate User...225

Initialization String..226

Key Password...226

Key Store..227

Key Store Password..228

LDAP Distinguished Name...228

Load Balancing...229

LoadBalance Timeout...230

LOB Prefetch Size..231

Local Timezone Offset..231

Lock Timeout..232

Login Timeout...233

Max Pool Size...234

Min Pool Size..234

Module..235

Password..236

Port Number ..237

Proxy Host..237

Proxy Mode...238

Proxy Password..239

Proxy Port...240

Proxy User..241

PRNGSeedFile...242

PRNGSeedSource ..243

Procedure Returns Results..244

Program ID...245

Query Timeout..246

Record Delimiter...246

Report Codepage Conversion Errors...247

Report Recycle Bin...248

SDU Size..248

Server Name..249

Server Process Type...250

Service Name...251

SID..252

SSLLibName..253

Support Binary XML...254

TCP Keep Alive..254

Timestamp Escape Mapping..255

TNSNames File..256

9Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Contents

Trust Store..257

Trust Store Password..258

Use Current Schema for SQLProcedures..258

User Name...259

Validate Server Certificate..259

Wallet Password...260

Wire Protocol Mode..261

Part I: Reference...263

Code Page Values...267
IANAAppCodePage Values..267

ODBC API and Scalar Functions..273
API Functions..273

Scalar Functions..276

String Functions..277

Numeric Functions..279

Date and Time Functions..280

System Functions...282

Internationalization, Localization, and Unicode..............................283
Internationalization and Localization..283

Locale...284

Language..284

Country...284

Variant...285

Unicode Character Encoding...285

Background...285

Unicode Support in Databases...286

Unicode Support in ODBC..286

Unicode and Non-Unicode ODBC Drivers...287

Function Calls...287

Data..289

Default Unicode Mapping..290

Driver Manager and Unicode Encoding on UNIX/Linux...291

References..292

Character Encoding in the odbc.ini and odbcinst.ini Files...292

Designing ODBC Applications for Performance Optimization......295
Using Catalog Functions..296

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.210

Contents

Caching Information to Minimize the Use of Catalog Functions...................................296

Avoiding Search Patterns..297

Using a Dummy Query to Determine Table Characteristics..297

Retrieving Data..298

Retrieving Long Data..298

Reducing the Size of Data Retrieved..298

Using Bound Columns..299

Using SQLExtendedFetch Instead of SQLFetch...299

Choosing the Right Data Type..300

Selecting ODBC Functions..300

Using SQLPrepare/SQLExecute and SQLExecDirect..300

Using Arrays of Parameters..300

Using the Cursor Library...301

Managing Connections and Updates...302

Managing Connections...302

Managing Commits in Transactions..302

Choosing the Right Transaction Model...303

Using Positioned Updates and Deletes...303

Using SQLSpecialColumns...303

Using Indexes...263

Introduction..264

Improving Row Selection Performance..264

Indexing Multiple Fields...265

Deciding Which Indexes to Create...265

Improving Join Performance..266

Locking and Isolation Levels..305
Locking..305

Isolation Levels..306

Locking Modes and Levels..307

SSL Encryption Cipher Suites..309

DataDirect Bulk Load...317
DataDirect Bulk Load Functions..317

Utility Functions...318

GetBulkDiagRec and GetBulkDiagRecW...318

Export, Validate, and Load Functions..320

ExportTableToFile and ExportTableToFileW...320

ValidateTableFromFile and ValidateTableFromFileW ...323

LoadTableFromFile and LoadTableFromFileW..325

DataDirect Bulk Load Statement Attributes...328

SQL_BULK_EXPORT...328

11Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Contents

SQL_BULK_EXPORT_PARAMS..329

Threading..331

WorkAround Options...333

Index..337

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.212

Contents

Preface

For details, see the following topics:

• Welcome to the Progress DataDirect for ODBC Oracle Wire Protocol Driver: Version 8.0.2

• What's New in this Release?

• Conventions Used in This Guide

• About the Product Documentation

• Contacting Technical Support

Welcome to the Progress DataDirect for ODBC Oracle
Wire Protocol Driver: Version 8.0.2

This is your user’s guide and reference for the Progress® DataDirect® for ODBC Oracle™ Wire Protocol driver.

The content of this book assumes that you are familiar with your operating system and its commands. It contains
the following information:

• Getting Started on page 23 explains the basics for quickly configuring and testing the drivers.

• What Is ODBC? on page 31 provides an explanation of ODBC.

• About the Oracle Wire Protocol Driver on page 33 explains the driver, supported environments and driver
requirements.

• Supported Features on page 51 explains features supported by the driver.

• Using the Driver on page 55 guides you through configuring the driver. It also explains how to use the
functionality supported by the driver such as Authentication and SSL encryption.

13Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

• Troubleshooting on page 163 explains the tools to solve common problems and documents error messages.

• The Connection Option Descriptions on page 175 section contains detailed descriptions of the connection
options supported by the driver.

• The Reference on page 263 section includes reference information about APIs, code page values, and
performance tuning.

If you are writing programs to access ODBC drivers, you need to obtain a copy of the ODBC Programmer’s
Reference for the Microsoft Open Database Connectivity Software Development Kit, available from Microsoft
Corporation.

For the latest information about your driver, refer to the readme file in your software package.

Note: This book refers the reader to Web pages using URLs for more information about specific topics, including
Web URLs not maintained by Progress DataDirect. Because it is the nature of Web content to change frequently,
Progress DataDirect can guarantee only that the URLs referenced in this book were correct at the time of
publication.

What's New in this Release?
For the latest certifications and enhancements, refer to the following:

• Release Notes (includes the latest OpenSSL support information)

• Supported Configurations

• DatatDirect Support Matrices

Changes since 8.0.2 GA

• Driver Enhancements

• The driver has been enhanced to support Oracle Wallet Password Stores. When this feature is enabled,
the driver retrieves database credentials from an Oracle Wallet to be used for authentication to the server.
The driver has also been enhanced with the new Credentials Wallet Entry (CredentialsWalletEntry),
Credentials Wallet Path (CredentialsWalletPath), Wallet Password (CredentialsWalletPassword) options,
which allow you to configure this feature. See Oracle Wallet Password Store on page 136 for details.

• On Windows and UNIX/Linux, the driver has been enhanced to support using connection information
stored in an LDAP entry to establish a connection.You can configure the driver to use LDAP with the
new LDAP Distinguished Name (LDAPDistinguishedName) option and refreshed Host (HostName) and
Port Number (PortNumber) options. For details, see Using LDAP on page 119.

• The Driver Manager for UNIX/Linux has been enhanced to support setting the Unicode encoding type
for applications on a per connection basis. By passing a value for the SQL_ATTR_APP_UNICODE_TYPE
attribute using SQLSetConnectAttr, your application can specify the encoding at connection.This allows
your application to pass both UTF-8 and UTF-16 encoded strings with a single environment handle. See
Driver Manager and Unicode Encoding on UNIX/Linux on page 291 for details.

• On Windows and UNIX/Linux, the driver has been enhanced to support connecting through Oracle
Connection Manager. See Oracle Connection Manager on page 121 for details.

• The new AllowedOpenSSLVersions option allows you to determine which version of the OpenSSL library
file the driver uses for data encryption. See AllowedOpenSSLVersions on page 184 or Designating an
OpenSSL Library on page 139 for details.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.214

Preface

https://www.progress.com/datadirect-connectors/whats-new#odbc
https://www.progress.com/supported-configurations/datadirect
https://www.progress.com/matrices/datadirect

• The driver has been enhanced to support the following new statement attributes that allow you to override
connection option settings for an individual statementTroubleshooting on page 163:

• SQL_ATTR_BULK_LOAD_ENABLED statement attribute overrides the EnableBulkLoad option

• SQL_ATTR_IANA_APP_CODE_PAGE statement attribute overrides the IANAAppCodePage option

See Enable Bulk Load on page 210 and IANAAppCodePage on page 224 for details.

• On Windows and UNIX/Linux, the driver has been enhanced to support connecting to a proxy server
through an HTTP connection. HTTP proxy support is configurable with five new connection options. See
Proxy Host on page 237, Proxy Mode on page 238, Proxy Password on page 239, Proxy Port on page 240,
and Proxy User on page 241 for details.

• The driver has been enhanced with the new Impersonate User connection option that allows you to
specify the proxy user ID used for impersonation. The user ID specified using this option determines
your permissions and identity when executing queries. See Impersonate User on page 225 for details.

• The driver has been enhanced to support using the default Service Name or SID specified in the
server-side listener.ora file. See Service Name on page 251, SID on page 252, and TNSNames File
on page 256 for details.

• The driver has been enhanced to support Oracle Database Vault.

• The driver has been enhanced to support the Oracle Database Exadata Cloud Service.

• Changed Behavior

• On the GUI, proxy-related options have been moved from the General tab to the new Proxy tab.

• The following Windows platforms have reached the end of their product lifecycle and are no longer
supported by the driver:

• Windows 8.0 (versions 8.1 and higher are still supported)

• Windows Vista (all versions)

• Windows XP (all versions)

• Windows Server 2003 (all versions)

• The setting of the Array Size option can now be overridden by specifying the number of rows to fetch
using the SQL_ATTR_ROW_ARRAY_SIZE statement attribute. See Array Size on page 188 for details.

Changes for 8.0.2 GA

• Certifications

• Certified with Oracle 12c R2 (12.2)

• Certified with Windows Server 2016

• Certified with Red Hat Enterprise 7.3

• Support for the following platforms is now generally available:

• HP-UX IPF (32 and 64-bit)

• HP-UX PA-RISC (32-bit)

• Oracle Solaris x86 (32- and 64-bit)

• Oracle Solaris on SPARC (32- and 64-bit)

15Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Preface

• Support for the Intel Itanium II (IPF) processor on the following 64-bit Linux platforms is now generally
available:

• CentOS Linux 4.x, 5.x, 6.x, and 7.x

• Oracle Linux 4.x, 5.x, 6.x, and 7.x

• Red Hat Enterprise Linux AS, ES, and WS version 4.x, 5.x, 6.x, and 7.x

See 64-Bit Drivers Requirements for UNIX/Linux on page 39 for details.

Support for operating environments and database versions are always being added. For the latest information
about supported platforms and databases, refer to the Progress DataDirect database support matrices page
at: https://www.progress.com/matrices/datadirect.

• Driver Enhancements

• Support for Oracle Wallet, including:

• Oracle Wallet SSL Authentication

• Using Oracle Wallet as a keystore or truststore for SSL data encryption.

See Oracle Wallet SSL Authentication on page 135 and Using Oracle Wallet as a Keystore on page 140
for details.

• The driver has been certified to use Oracle Internet Directory as a means to store authentication
information. See Oracle Internet Directory (OID) on page 135 for details.

• The Oracle driver has been enhanced to support the following new data integrity algorithms for Oracle
12c and higher: SHA256, SHA384, SHA512. To use these algorithms, specify their values using the
Data Integrity Types connection option and enable data integrity checks with the Data Integrity Level
connection option. See Data Integrity Types on page 206 and Data Integrity Level on page 205 for details.

• The maximum supported length of identifiers has been increased to 128 bytes when connecting to Oracle
12c R2 (12.2) databases. This change has been implemented to reflect the new maximum length
supported by the server.

• Changed Behavior

• The default value for the Data Integrity Types connection option has changed to the following:

MD5,SHA1,SHA256,SHA384,SHA512

See Data Integrity Types on page 206 for details.

Changes for 8.0.1 GA

• Certifications

• Certified with Debian Linux 7.11, 8.5

• Certified with Ubuntu Linux 14.04, 16.04

• macOS v10.12.x (Sierra)

• Driver Enhancements

• Support for the Oracle 12 and 12a authentication protocols, which provide improved security.

• Support for returning implicit result sets from stored procedures.

• The driver is now compiled using Visual Studio 2015 for improved security.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.216

Preface

https://www.progress.com/matrices/datadirect

• The new SDU Size connection option allows you to specify the size in bytes of the Session Data Unit
(SDU) that the driver requests when connecting to the server. See SDU Size on page 248 for details.

• The new Support Binary XML connection option enables the driver to support XMLType with binary
storage on servers running Oracle 12c and higher. See Support Binary XML on page 254 for details.

• The new LOB Prefetch Size connection option allows you to specify the size of prefetch data the driver
returns for BLOBs and CLOBs for Oracle database versions 12.1.0.1 and higher. With LOB prefetch
enabled, the driver can return LOB meta-data and the beginning of LOB data along with the LOB locator
during a fetch operation. This can have significant performance impact, especially for small LOBs which
can potentially be entirely prefetched, because the data is available without having to go through the
LOB protocol. See LOB Prefetch Size on page 231 for details.

• Changed Behavior

• The Enable N-CHAR Support connection option has been deprecated, and the driver behavior has been
updated to always provide support for the N-types NCHAR, NVARCHAR2 and NCLOB. For compatibility
purposes, the EnableNcharSupport attribute can still be manually specified for this release, but will be
deprecated in subsequent versions of the product. See Enable N-CHAR Support on page 211 and for
details.

• The Enable Timestamp with Timezone connection option has been deprecated, and the driver behavior
has been updated to always expose timestamps with timezones to the application. For compatibility
purposes, the EnableTimestampwithTimezone attribute can still be manually specified for this release,
but it will be deprecated in subsequent versions of the product. See Enable Timestamp with Timezone
on page 214 for details.

• The default value for the Data Integrity Level connection option has been updated to 1 (Accepted). By
default, a data integrity check can now be made on data sent between the driver and the database
server, if the server request or requires it. This change allows the driver to connect to servers requiring
Oracle Advanced Security data integrity checks using the default configuration. See Data Integrity Level
on page 205 for details.

• The default value for the Encryption Level connection option has been updated to 1 (Accepted). By
default, encryption is now used on data sent between the driver and the database server if the database
server requests or requires it. This change allows the driver to connect to servers requiring Oracle
Advanced Security encryption using the default configuration. See Encryption Level on page 215 for
details.

Changes for 8.0.0 GA

• New Progress DataDirect for Oracle Wire Protocol Driver for Mac OS X

• The Oracle Wire Protocol driver is available for Mac OS X platforms, which includes:

• Support for the following Mac OS X Platforms:

• Mac OS X v10.11.x (El Capitan)

• Mac OS X v10.10.x (Yosemite)

• Mac OS X v10.9.x (Mavericks)

• Support for the following databases:

• Oracle 12c R1 (12.1)

• Oracle 11g R1, R2 (11.1, 11.2)

• Oracle 10g R1, R2 (10.1, 10.2)

• Oracle 9i R1, R2 (9.0.1, 9.2)

17Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Preface

• Oracle8i R3 (8.1.7)

• Support for iODBC Driver Manager, version 3.52.7 and higher.

• DataDirect Wire Protocol technology for improved response time and throughput.

• Support for core SQL-92 grammar.

• Supports ODBC Core and Level 1 functions.

• Advanced security features, including data encryption, Kerberos authentication, and Oracle Advanced
Security.

• Support for failover protection.

See Support for macOS Environments on page 42 and Configuring the Product on macOS on page 65 for
details.

Conventions Used in This Guide
The following sections describe the conventions used to highlight information that applies to specific operating
systems and typographical conventions.

Operating System Symbols

The drivers are supported in the Windows, UNIX, Linux, and macOS environments. When the information
provided is not applicable to all supported environments, the following symbols are used to identify that
information:

The Windows symbol signifies text that is applicable only to Windows.

The UNIX symbol signifies text that is applicable only to UNIX and Linux.

The macOS symbol signifies text that is applicable only to macOS.

Typography

This guide uses the following typographical conventions:

ExplanationConvention

Introduces new terms with which you may not be familiar, and is used occasionally
for emphasis.

italics

Emphasizes important information. Also indicates button, menu, and icon names on
which you can act. For example, click Next.

bold

Indicates keys or key combinations that you can use. For example, press the ENTER
key.

BOLD UPPERCASE

Indicates SQL reserved words.UPPERCASE

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.218

Preface

ExplanationConvention

Indicates syntax examples, values that you specify, or results that you receive.monospace

Indicates names that are placeholders for values that you specify. For example,
filename.

monospaced
italics

Separates menus and their associated commands. For example, Select File > Copy
means that you should select Copy from the File menu.

>

The slash also separates directory levels when specifying locations under UNIX, Linux
or macOS.

/

Indicates an "OR" separator used to delineate items.vertical rule |

Indicates optional items. For example, in the following statement: SELECT
[DISTINCT], DISTINCT is an optional keyword.

Also indicates sections of the Windows Registry.

brackets []

Indicates that you must select one item. For example, {yes | no} means that you must
specify either yes or no.

braces { }

Indicates that the immediately preceding item can be repeated any number of times
in succession. An ellipsis following a closing bracket indicates that all information in
that unit can be repeated.

ellipsis . . .

About the Product Documentation
This guide provides specific information about your Progress DataDirect for ODBC driver.You can view this
documentation in the HTML format installed with the product. The documentation is also available in PDF
format .You can download the PDF version of the documentation at:

https://www.progress.com/documentation/datadirect-connectors

This guide is installed with the product as an HTML-based help system.This help system is located in the help
subdirectory of the product installation directory.You can use the help system with any of the following browsers:

• Microsoft Edge on Windows 10

• Internet Explorer 7.x and higher

• Firefox 3.x and higher

• Safari 5.x

• Google Chrome 44.x and earlier

On all platforms, you can access the entire Help system by opening the following file from within your browser:

install_dir/help/OracleHelp/index.html

19Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Preface

https://www.progress.com/documentation/datadirect-connectors

where install_dir is the path to the product installation directory.

Or, from a command-line environment, at a command prompt, enter:

browser_exe install_dir/help/OracleHelp/index.html

where browser_exe is the name of your browser executable and install_dir is the path to the product
installation directory.

After the browser opens, the left pane displays the Table of Contents, Index, and Search tabs for the entire
documentation library. When you have opened the main screen of the Help system in your browser, you can
bookmark it in the browser for quick access later.

Note: Security features set in your browser can prevent the Help system from launching. A security warning
message is displayed. Often, the warning message provides instructions for unblocking the Help system for
the current session. To allow the Help system to launch without encountering a security warning message, the
security settings in your browser can be modified. Check with your system administrator before disabling any
security features.

Help is also available from the setup dialog box for each driver. When you click Help, your browser opens to
the correct topic without opening the help Table of Contents. A grey toolbar appears at the top of the browser
window.

This tool bar contains previous and next navigation buttons. If, after viewing the help topic, you want to see
the entire library, click:

on the left side of the toolbar, which opens the left pane and displays the Table of Contents, Index, and Search
tabs.

Contacting Technical Support
Progress DataDirect offers a variety of options to meet your support needs. Please visit our Web site for more
details and for contact information:

https://www.progress.com/support

The Progress DataDirect Web site provides the latest support information through our global service network.
The SupportLink program provides access to support contact details, tools, patches, and valuable information,
including a list of FAQs for each product. In addition, you can search our Knowledgebase for technical bulletins
and other information.

When you contact us for assistance, please provide the following information:

• Your number or the serial number that corresponds to the product for which you are seeking support, or a
case number if you have been provided one for your issue. If you do not have a SupportLink contract, the
SupportLink representative assisting you will connect you with our Sales team.

• Your name, phone number, email address, and organization. For a first-time call, you may be asked for full
information, including location.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.220

Preface

https://www.progress.com/support

• The Progress DataDirect product and the version that you are using.

• The type and version of the operating system where you have installed your product.

• Any database, database version, third-party software, or other environment information required to understand
the problem.

• A brief description of the problem, including, but not limited to, any error messages you have received, what
steps you followed prior to the initial occurrence of the problem, any trace logs capturing the issue, and so
on. Depending on the complexity of the problem, you may be asked to submit an example or reproducible
application so that the issue can be re-created.

• A description of what you have attempted to resolve the issue. If you have researched your issue on Web
search engines, our Knowledgebase, or have tested additional configurations, applications, or other vendor
products, you will want to carefully note everything you have already attempted.

• A simple assessment of how the severity of the issue is impacting your organization.

July 2020, Release 8.0.2 of the Progress DataDirect Connect for ODBC for Oracle Wire Protocol Driver, Version
0001

21Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Preface

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.222

Preface

1
Getting Started

This chapter provides basic information about configuring your driver immediately after installation and testing
your connection. To take full advantage of the features of the driver, read "About the Driver" and "Using the
Driver".

Information that the driver needs to connect to a database is stored in a data source. The ODBC specification
describes three types of data sources: user data sources, system data sources (not a valid type on UNIX/Linux),
and file data sources. On Windows and macOS, user and system data sources are stored on the local computer.
The difference is that only a specific user can access user data sources, whereas any user of the machine can
access system data sources. On all platforms, file data sources, which are simply text files, can be stored
locally or on a network computer, and are accessible to other machines.

When you define and configure a data source, you store default connection values for the driver that are used
each time you connect to a particular database.You can change these defaults by modifying the data source.

For details, see the following topics:

• Configuring and Connecting on Windows

• Configuring and Connecting on UNIX and Linux

• Configuring and Connecting on macOS

• Accessing Data With Third-Party Applications

23Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting on Windows

The following basic information enables you to configure a data source and test connect with a driver
immediately after installation. On Windows, you can configure and modify data sources through the ODBC
Administrator using a driver Setup dialog box. Default connection values are specified through the options on
the tabs of the Setup dialog box and are stored either as a user or system data source in the Windows Registry,
or as a file data source in a specified location.

Configuring a Data Source

To configure a data source:

1. From the Progress DataDirect program group, start the ODBC Administrator and click either the User DSN,
System DSN, or File DSN tab to display a list of data sources.

• User DSN: If you installed a default DataDirect ODBC user data source as part of the installation, select
the appropriate data source name and click Configure to display the driver Setup dialog box.

If you are configuring a new user data source, click Add to display a list of installed drivers. Select the
appropriate driver and click Finish to display the driver Setup dialog box.

• System DSN: To configure a new system data source, click Add to display a list of installed drivers.
Select the appropriate driver and click Finish to display the driver Setup dialog box.

• File DSN: To configure a new file data source, click Add to display a list of installed drivers. Select the
driver and click Advanced to specify attributes; otherwise, click Next to proceed. Specify a name for
the data source and click Next.Verify the data source information; then, click Finish to display the driver
Setup dialog box.

The General tab of the Setup dialog box appears by default.

Note: The General tab displays only fields that are required for creating a data source. The fields on all
other tabs are optional, unless noted otherwise in this book.

2. On the General tab, provide the following information; then, click Apply.

Host: Type either the name or the IP address of the server to which you want to connect.

Port Number: Type the port number of your Oracle listener. Check with your database administrator for
the correct number.

SID: Type the Oracle System Identifier that refers to the instance of Oracle running on the server. This
option and the Service Name option are mutually exclusive. If the Service Name option is specified, do not
specify this option.

Service Name: Type the Oracle service name that specifies the database used for the connection. The
service name is a string that is the global database name—a name that is comprised of the database name
and domain name, for example: sales.us.acme.com. This option and the SID option are mutually
exclusive. If the SID option is specified, do not specify this option.

Edition Name: Oracle 11g R2 and higher only. Type the name of the Oracle edition that the driver is to use
when establishing a connection. Oracle 11g R2 and higher allows your database administrator to create
multiple editions of schema objects so that your application can still use those objects while the database
is being upgraded. This option tells the driver which edition of the schema objects to use.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.224

Chapter 1: Getting Started

Note: If no values are specified for the SID, Service Name, and TNSNames options, the driver attempts
to connect to the ORCL SID by default.

Testing the Connection

To test the connection:

1. After you have configured the data source, you can click Test Connect on the Setup dialog box to attempt
to connect to the data source using the connection options specified in the dialog box. The driver returns a
message indicating success or failure. A logon dialog box appears.

2. Supply the requested information in the logon dialog box and click OK. Note that the information you enter
in the logon dialog box during a test connect is not saved.

• If the driver can connect, it releases the connection and displays a Connection Established message.
Click OK.

• If the driver cannot connect because of an incorrect environment or connection value, it displays an
appropriate error message. Click OK.

3. On the driver Setup dialog box, click OK. The values you have specified are saved and are the defaults
used when you connect to the data source.You can change these defaults by using the previously described
procedure to modify your data source.You can override these defaults by connecting to the data source
using a connection string with alternate values.

See also
Using a Logon Dialog Box on page 113
Connection Option Descriptions on page 175

Configuring and Connecting on UNIX and Linux

The following basic information enables you to configure a data source and test connect with a driver immediately
after installation. See "Configuring the Product on UNIX/Linux" for detailed information about configuring the
UNIX/Linux environment and data sources.

Note: In the following examples, xx in a driver filename represents the driver level number.

See also
Configuring the Product on UNIX/Linux on page 56

Environment Configuration

To configure the environment:

25Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting on UNIX and Linux

1. Check your permissions:You must log in as a user with full r/w/x permissions recursively on the entire
product installation directory.

2. From your login shell, determine which shell you are running by executing:

echo $SHELL

3. Run one of the following product setup scripts from the installation directory to set variables: odbc.sh or
odbc.csh. For Korn, Bourne, and equivalent shells, execute odbc.sh. For a C shell, execute odbc.csh.
After running the setup script, execute:

env

to verify that the installation_directory/lib directory has been added to your shared library path.

4. Set the ODBCINI environment variable. The variable must point to the path from the root directory to the
system information file where your data source resides. The system information file can have any name,
but the product is installed with a default file called odbc.ini in the product installation directory. For
example, if you use an installation directory of /opt/odbc and the default system information file, from the
Korn or Bourne shell, you would enter:

ODBCINI=/opt/odbc/odbc.ini; export ODBCINI

From the C shell, you would enter:

setenv ODBCINI /opt/odbc/odbc.ini

Test Loading the Driver

The ivtestlib (32-bit drivers) and ddtestlib (64-bit drivers) test loading tools are provided to test load drivers and
help diagnose configuration problems in the UNIX and Linux environments, such as environment variables not
correctly set or missing database client components.This tool is installed in the /bin subdirectory in the product
installation directory. It attempts to load a specified ODBC driver and prints out all available error information
if the load fails.

For example, if the drivers are installed in /opt/odbc/lib, the following command attempts to load the 32-bit
driver on Solaris, where xx represents the version number of the driver:

ivtestlib /opt/odbc/lib/ivoraxx.so

Note: On Solaris, AIX, and Linux, the full path to the driver does not have to be specified for the tool. The
HP-UX version, however, requires the full path.

If the load is successful, the tool returns a success message along with the version string of the driver. If the
driver cannot be loaded, the tool returns an error message explaining why.

Configuring a Data Source in the System Information File

The default odbc.ini file installed in the installation directory is a template in which you create data source
definitions.You enter your site-specific database connection information using a text editor. Each data source
definition must include the keyword Driver=, which is the full path to the driver.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.226

Chapter 1: Getting Started

The following examples show the minimum connection string options that must be set to complete a test
connection, where xx represents iv for 32-bit or dd for 64-bit drivers, yy represents the driver level number,
and zz represents the extension. The values for the options are samples and are not necessarily the ones you
would use.

[ODBC Data Sources]
Oracle=DataDirect 8.0 Oracle Wire Protocol Driver

[Oracle]
Driver=ODBCHOME/lib/xxorayy.zz
EditionName=oracle 1
HostName=199.226.224.34
PortNumber=1521
ServiceName=sales.us.acme.com

Connection Option Descriptions:

EditionName: Oracle 11g R2 and higher only. The name of the Oracle edition the driver uses when establishing
a connection. Oracle 11g R2 and higher allows your database administrator to create multiple editions of
schema objects so that your application can still use those objects while the database is being upgraded. This
option is only valid for Oracle 11g R2 and higher databases and tells the driver which edition of the schema
objects to use.

HostName: The name or the IP address of the server to which you want to connect.

PortNumber:The port number of your Oracle listener. Check with your database administrator for the number.

ServiceName:The Oracle service name that specifies the database used for the connection. The service
name is a string that is the global database name—a name that is comprised of the database name and domain
name, for example: sales.us.acme.com.

SID:The Oracle System Identifier that refers to the instance of Oracle running on the server.

Note: SID and ServiceName are mutually exclusive. Only one or the other can be specified in the data source;
otherwise, an error is generated.

Note: If no values are specified for the SID, Service Name, and TNSNames options, the driver attempts to
connect to the ORCL SID by default.

Testing the Connection

The driver installation includes an ODBC application called example that can be used to connect to a data
source and execute SQL.The application is located in the installation_directory/samples/example
directory.

To run the program after setting up a data source in the odbc.ini, enter example and follow the prompts to
enter your data source name, user name, and password. If successful, a SQL> prompt appears and you can
type in SQL statements such as SELECT * FROM table. If example is unable to connect, the appropriate
error message is returned.

27Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting on UNIX and Linux

Configuring and Connecting on macOS

The following basic information enables you to configure a data source and test connect with a driver immediately
after installation. On macOS, you can configure and modify data sources by editing the odbc.ini file or by
configuring the GUI provided by iODBC Administrator. Connection values specified through the options on the
of the Setup dialog box are stored either as a user or system data source in the odbc.ini file, or as a file
data source in a specified location. See "Configuring and Connecting to Data Sources" for detailed information
about configuring the macOS environment and data sources.

Note: In the following examples, xx in a driver filename represents the driver level number.

See also
Configuring and Connecting to Data Sources on page 56

iODBC Driver Manager

Before you can use the driver, you must install and setup the iODBC Driver Manager on your machine. iODBC
is an open-source interface that manages data sources and loads DataDirect drivers for macOS applications.
It is the most commonly used Driver Manager for macOS platforms and is included with some versions of the
operating system. For more information, refer to http://www.iodbc.org/.

Configuring a Data Source

To configure a data source using the iODBC GUI:

1. Using Finder, open the iODBC Administrator application and click either the User DSN, System DSN, or
File DSN tab to display a list of data sources.

• User DSN: If you installed a default DataDirect ODBC user data source as part of the installation, select
the appropriate data source name and click Configure to display the driver Setup dialog box.

If you are configuring a new user data source, click Add to display a list of installed drivers. Select the
appropriate driver and click Finish to display the driver Setup dialog box.

• System DSN: To configure a new system data source, click Add to display a list of installed drivers.
Select the appropriate driver and click Finish to display the driver Setup dialog box.

• File DSN: To configure a new file data source, click Add to display a list of installed drivers. Select the
driver and click Advanced to specify attributes; otherwise, click Next to proceed. Specify a name for
the data source and click Next.Verify the data source information; then, click Finish to display the driver
Setup dialog box.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.228

Chapter 1: Getting Started

http://www.iodbc.org/

The data source Setup dialog box appears. If you are configuring an existing data source, the dialog is
prepopulated with a list of the connection option attribute-value pairs currently stored in the odbc.ini file.
For new data sources, the dialog will be empty.

2. On the Setup dialog, provide keyword-value pairs for the connection options in the following table; then,
click OK. To add missing pairs, click the Add button . Then, in the new row, type the attribute name in
the Keyword field and the desired valid value in the Value field.

Table 1: Required Connection Options

ValueKeyword

Oracle 11g R2 and higher only. The name of the Oracle edition the driver uses when
establishing a connection. Oracle 11g R2 and higher allows your database administrator
to create multiple editions of schema objects so that your application can still use those
objects while the database is being upgraded. This option is only valid for Oracle 11g R2
and higher databases and tells the driver which edition of the schema objects to use.

EditionName

The name or the IP address of the server to which you want to connect.HostName

The port number of your Oracle listener. Check with your database administrator for the
number.

PortNumber

The Oracle service name that specifies the database used for the connection.The service
name is a string that is the global database name—a name that is comprised of the
database name and domain name, for example: sales.us.acme.com.

ServiceName

The Oracle System Identifier that refers to the instance of Oracle running on the server.
The default is ORCL.

SID

Note: SID and ServiceName are mutually exclusive. Only one or the other can be specified in the data
source; otherwise, an error is generated.

Testing the Connection

Note: Some earlier versions of the iODBC Administrator do not support testing 64-bit drivers. If you experience
an issue, you can still test the connection by using the example application installed in the product installation
directory. See "The example Application" for more information.

To test the connection:

1. After you have configured the data source, on the iODBC Data Source Administrator dialog, highlight your
data source from the list; then, click Test. A logon dialog box appears.

2. Supply the requested information in the logon dialog box and click OK. Note that the information you enter
in the logon dialog box during a test connect is not saved.

• If the driver can connect, it releases the connection and displays a Connection Established message.
Click OK.

29Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting on macOS

• If the driver cannot connect because of an incorrect environment or connection value, it displays an
appropriate error message. Click OK.

3. On the driver iODBC Data Source Administrator, click OK. The values you have specified are saved and
are the defaults used when you connect to the data source.You can change these defaults by using the
previously described procedure to modify your data source.You can override these defaults by connecting
to the data source using a connection string with alternate values.

See also
The example Application on page 72

Accessing Data With Third-Party Applications
For procedures related to accessing data with common third-party applications, such as Tableau and Excel,
refer to the Quick Start that corresponds to your data source and platform at
https://www.progress.com/documentation/datadirect-connectors.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.230

Chapter 1: Getting Started

https://www.progress.com/documentation/datadirect-connectors

2
What Is ODBC?

The Open Database Connectivity (ODBC) interface by Microsoft allows applications to access data in database
management systems (DBMS) using SQL as a standard for accessing the data. ODBC permits maximum
interoperability, which means a single application can access different DBMS. Application end users can then
add ODBC database drivers to link the application to their choice of DBMS.

The ODBC interface defines:

• A library of ODBC function calls of two types:

• Extended functions that support additional functionality, including scrollable cursors

• Core functions that are based on the X/Open and SQL Access Group Call Level Interface specification

• SQL syntax based on the X/Open and SQL Access Group SQL CAE specification (1992)

• A standard set of error codes

• A standard way to connect and logon to a DBMS

• A standard representation for data types

The ODBC solution for accessing data led to ODBC database drivers, which are dynamic-link libraries on
Windows and shared objects on UNIX and Linux, and dynamic libraries on macOS. These drivers allow an
application to gain access to one or more data sources. ODBC provides a standard interface to allow application
developers and vendors of database drivers to exchange data between applications and data sources.

For details, see the following topics:

• How Does It Work?

• Why Do Application Developers Need ODBC?

31Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

How Does It Work?
The ODBC architecture has four components:

• An application, which processes and calls ODBC functions to submit SQL statements and retrieve results

• A Driver Manager, which loads drivers for the application

• A driver, which processes ODBC function calls, submits SQL requests to a specific data source, and returns
results to the application

• A data source, which consists of the data to access and its associated operating system, DBMS, and network
platform (if any) used to access the DBMS

The following figure shows the relationship among the four components:

Why Do Application Developers Need ODBC?
Using ODBC, you, as an application developer can develop, compile, and ship an application without targeting
a specific DBMS. In this scenario, you do not need to use embedded SQL; therefore, you do not need to
recompile the application for each new environment.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.232

Chapter 2: What Is ODBC?

3
About the Oracle Wire Protocol Driver

The 32- and 64-bit Progress DataDirect for ODBC for Oracle Wire Protocol drivers (the Oracle Wire Protocol
driver) support the following Oracle database servers:

• Oracle 12c R1 (12.1) and higher

• Oracle 11g R1 (11.1) and higher

• Oracle 10g R1 (10.1) and higher

• Oracle 9i R1 (9.0.1) and higher

• Oracle 8i R3 (8.1.7) and higher

The Oracle Wire Protocol driver is supported in the Windows, UNIX, Linux, and macOS environments. See
"Support for Multiple Environments" for detailed information about the environments supported by this driver.

For the latest information on certifications and supported configurations, refer to the Supported Matrices and
Supported Configurations pages.

See "Driver File Names for Windows" and "Driver File Names for UNIX/Linux" for the file name of the driver.

Note: The Oracle Wire Protocol driver does not require any Oracle client software. Progress DataDirect also
provides an Oracle client-based driver. Refer to the DataDirect Connect Series for ODBC Library for details.

For details, see the following topics:

• Driver Requirements

• ODBC Compliance

• Support for Multiple Environments

33Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

https://www.progress.com/matrices/datadirect
https://www.progress.com/supported-configurations/datadirect
http://media.datadirect.com/download/docs/odbc/allodbc/

• Version String Information

• Data Types

• Isolation and Lock Levels Supported

• Using Parameter Arrays

Driver Requirements
The driver has no client requirements.

ODBC Compliance
The driver is compliant with the Open Database Connectivity (ODBC) specification and compatible with ODBC
3.8 applications. The driver is Level 1 compliant, that is, it supports all ODBC Core and Level 1 functions.

In addition, the following functions are supported:

• SQLColumnPrivileges

• SQLDescribeParam (if EnableDescribeParam=1)

• SQLForeignKeys

• SQLPrimaryKeys

• SQLProcedures

• SQLProcedureColumns

• SQLSetPos

• SQLTablePrivileges

For macOS, the following functions are not supported by the iODBC driver manager, and therefore, cannot be
successfully executed by the driver:

Core:

• SQLAllocConnect

• SQLAllocEnv

• SQLAllocStmt

• SQLFreeConnect

• SQLFreeEnv

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.234

Chapter 3: About the Oracle Wire Protocol Driver

Level 1:

• SQLGetStmtOption

• SQLSetStmtOption

Level 2:

• SQLDescribeParam

• SQLParamOptions

Level 3:

• SQLTransact

See "API Functions" for a list of the API functions supported by the driver.

See also
API Functions on page 273

Support for Multiple Environments
Your Progress DataDirect driver is ODBC-compliant for Windows, UNIX, Linux, and macOS operating systems.
This section explains the environment-specific differences when using the database drivers in your operating
environment.

Note: Support for operating environments and database versions are continually being added. For the latest
information about supported platforms and databases, refer to the Progress DataDirect database support
configurations Web pages at: https://www.progress.com/matrices/supported-configurations

See also
Threading on page 331

Support for Windows Environments

The following are requirements for the 32- and 64-bit drivers on Windows operating systems.

32-Bit Driver Requirements for Windows

• All required network software that is supplied by your database system vendors must be 32-bit compliant.

• If your application was built with 32-bit system libraries, you must use 32-bit driver. If your application was
built with 64-bit system libraries, you must use the 64-bit driver (see "64-bit Driver Requirements"). The
database to which you are connecting can be either 32-bit or 64-bit enabled.

• The following processors are supported:

• x86: Intel

• x64: Intel and AMD

35Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Support for Multiple Environments

https://www.progress.com/matrices/supported-configurations

• The following operating systems are supported for your DataDirect Connect for ODBC driver. All editions are
supported unless otherwise noted.

• Windows Server 2016

• Windows Server 2012

• Windows Server 2008

• Windows 10

• Windows 8.1

• Windows 7

• An application that is compatible with components that were built using Microsoft Visual Studio 2015 compiler
and the standard Win32 threading model.

• You must have ODBC header files to compile your application. For example, Microsoft Visual Studio includes
these files.

See also
64-Bit Driver Requirements for Windows on page 36

64-Bit Driver Requirements for Windows

• All required network software that is supplied by your database system vendors must be 64-bit compliant.

• The following processors are supported:

• Intel

• AMD

• The following operating systems are supported for your 64-bit driver. All editions are supported unless
otherwise noted.

• Windows Server 2016

• Windows Server 2012

• Windows Server 2008

• Windows 10

• Windows 8.1

• Windows 7

• An application that is compatible with components that were built using Microsoft C/C++ Optimizing Compiler
Version 14.00.40310.41 and the standard Windows 64 threading model.

• You must have ODBC header files to compile your application. For example, Microsoft Visual Studio includes
these files.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.236

Chapter 3: About the Oracle Wire Protocol Driver

Setup of the Driver
The driver must be configured before it can be used. See "Configuring a Data Source" for information about
using the Windows ODBC Administrator. See "Configuring and Connecting to Data Sources" for details about
driver configuration.

See also
Configuring a Data Source on page 24
Configuring and Connecting to Data Sources on page 56

Driver File Names for Windows
The prefix for all 32-bit driver file names is iv. The prefix for all 64-bit driver file names is dd. The file extension
is .dll, which indicates dynamic link libraries. For example, the 32-bit Oracle Wire Protocol driver file name
is ivorann.dll, where nn is the revision number of the driver.

For the 8.0 version of the 32-bit driver, the file name is:

ivora28.dll

For the 8.0 version of the 64-bit driver, the file name is:

ddora28.dll

Refer to the installed readme file for a complete list of installed files.

Support for UNIX and Linux Environments

The following are requirements for the 32- and 64-bit drivers on UNIX/Linux operating systems.

32-Bit Driver Requirements for UNIX/Linux

• All required network software that is supplied by your database system vendors must be 32-bit compliant.

• If your application was built with 32-bit system libraries, you must use 32-bit drivers. If your application was
built with 64-bit system libraries, you must use 64-bit drivers (see "64-bit Driver Requirements for
UNIX/Linux"). The database to which you are connecting can be either 32-bit or 64-bit enabled.

AIX

• IBM POWER processor

• AIX 5L operating system, version 5.3 fixpack 5 and higher, 6.1, and 7.1

• An application compatible with components that were built using Visual Age C++ 6.0.0.0 and the AIX native
threading model

HP-UX

• The following processors are supported:

• PA-RISC

• Intel Itanium II (IPF)

37Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Support for Multiple Environments

• The following operating systems are supported:

• For PA-RISC: HP-UX 11i Versions 2 and 3 (B.11.23 and B.11.3x)

• For IPF: HP-UX IPF 11i Versions 2 and 3 (B.11.23 and B.11.3x)

• For PA-RISC: An application compatible with components that were built using HP aC++ 3.60 and the
HP-UX 11 native (kernel) threading model (posix draft 10 threads).

All of the standard 32-bit UNIX drivers are supported on HP PA-RISC.

• For IPF: An application compatible with components that were built using HP aC++ 5.36 and the HP-UX
11 native (kernel) threading model (posix draft 10 threads)

Linux

• The following processors are supported:

• x86: Intel

• x64: Intel and AMD

• The following operating systems are supported:

• CentOS Linux 4.x, 5.x, 6.x, and 7.x

• Debian Linux 7.11, 8.5

• Oracle Linux 4.x, 5.x, 6.x, and 7.x

• Red Hat Enterprise Linux 4.x, 5.x, 6.x, and 7.x

• SUSE Linux Enterprise Server 10.x, and 11.x

• Ubuntu Linux 14.04, 16.04

• An application compatible with components that were built using g++ GNU project C++ Compiler version
3.4.6 and the Linux native pthread threading model (Linuxthreads).

Oracle Solaris

• The following processors are supported:

• Oracle SPARC

• x86: Intel

• x64: Intel and AMD

• The following operating systems are supported:

• For Oracle SPARC: Oracle Solaris 8, 9, 10, 11.x

• For x86/x64: Oracle Solaris 10, Oracle Solaris 11.x

• For Oracle SPARC: An application compatible with components that were built using Sun Studio 11, C++
compiler version 5.8 and the Solaris native (kernel) threading model.

• For x86/x64: An application compatible with components that were built using Oracle C++ 5.8 and the
Solaris native (kernel) threading model

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.238

Chapter 3: About the Oracle Wire Protocol Driver

See also
Threading on page 331
64-Bit Drivers Requirements for UNIX/Linux on page 39

64-Bit Drivers Requirements for UNIX/Linux
All required network software that is supplied by your database system vendors must be 64-bit compliant.

AIX

• IBM POWER Processor

• AIX 5L operating system, version version 5.3 fixpack 5 and higher, 6.1, and 7.1

• An application compatible with components that were built using Visual Age C++ version 6.0.0.0 and the
AIX native threading model

HP-UX

• HP-UX IPF 11i operating system, Versions 2 and 3 (B.11.23 and B.11.31)

• HP aC++ v. 5.36 and the HP-UX 11 native (kernel) threading model (posix draft 10 threads)

Linux

• Intel Itanium II (IPF)

• Intel and AMD processors

• The following operating systems are supported:

• For Intel Itanium II (IPF):

• CentOS Linux 4.x, 5.x, 6.x, and 7.x

• Oracle Linux 4.x, 5.x, 6.x, and 7.x

• Red Hat Enterprise Linux AS, ES, and WS version 4.x, 5.x, 6.x, and 7.x

• For x64:

• CentOS Linux 4.x, 5.x, 6.x, and 7.x

• Debian Linux 7.11 and 8.5

• Oracle Linux 4.x, 5.x, 6.x, and 7.x

• Red Hat Enterprise Linux AS, ES, and WS version 4.x, 5.x, 6.x, and 7.x

• SUSE Linux Enterprise Server 10.x, and 11.x

• Ubuntu Linux 14.04 and 16.04

• For Itanium II: an application compatible with components that were built using g++ GNU project C++
Compiler version 3.3.2 and the Linux native pthread threading model (Linuxthreads)

• For x64: an application compatible with components that were built using g++ GNU project C++ Compiler
version 3.4 and the Linux native pthread threading model (Linuxthreads)

39Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Support for Multiple Environments

Oracle Solaris

• The following processors are supported:

• Oracle SPARC

• x64: Intel and AMD

• The following operating systems are supported:

• For Oracle SPARC: Oracle Solaris 8, 9, 10, and 11.x

• For x64: Oracle Solaris 10 and Oracle Solaris 11.x Express

• For Oracle SPARC: An application compatible with components that were built using Sun Studio 11, C++
compiler version 5.8 and the Solaris native (kernel) threading model

• For x64: An application compatible with components that were built using Oracle C++ Compiler version 5.8
and the Solaris native (kernel) threading model

See also
Threading on page 331

AIX
If you are building 64-bit binaries, you must pass the define ODBC64. The example Application provides a
demonstration of this. See the installed file example.txt for details.

You must also include the correct compiler switches if you are building 64-bit binaries. For instance, to build
example, you would use:

xlC_r –DODBC64 -q64 -qlonglong -qlongdouble -qvftable -o example
-I../include example.c -L../lib -lc_r -lC_r -lodbc

HP-UX 11 aCC
The ODBC drivers require certain runtime library patches. The patch numbers are listed in the readme file for
your product. HP-UX patches are publicly available from the HP Web site http://www.hp.com.

HP updates the patch database regularly; therefore, the patch numbers in the readme file may be superseded
by newer versions. If you search for the specified patch on an HP site and receive a message that the patch
has been superseded, download and install the replacement patch.

If you are building 64-bit binaries, you must pass the define ODBC64. The example Application provides a
demonstration of this. See the installed file example.txt for details.You must also include the +DD64 compiler
switch if you are building 64-bit binaries. For instance, to build example, you would use:

aCC -Wl,+s +DD64 -DODBC64 -o example -I../include example.c -L../lib -lodbc

Linux
If you are building 64-bit binaries, you must pass the define ODBC64. The example Application provides a
demonstration of this. See the installed file example.txt for details.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.240

Chapter 3: About the Oracle Wire Protocol Driver

http://www.hp.com

You must also include the correct compiler switches if you are building 64-bit binaries. For instance, to build
example, you would use:

g++ -o example -DODBC64 -I../include example.c -L../lib -lodbc -lodbcinst -lc

Oracle Solaris
If you are building 64-bit binaries, you must pass the define ODBC64. The example Application provides a
demonstration of this. See the installed file example.txt for details.

You must also include the -xarch=v9 compiler switch if you are building 64-bit binaries. For instance, to build
example, you would use:

CC -mt –DODBC64 -xarch=v9 -o example -I../include example.c -L../lib -lodbc –lCrun

Setup of the Environment and the Drivers
On UNIX and Linux, several environment variables and the system information file must be configured before
the drivers can be used. See the following topics for additional information:

• "Configuring and Connecting on UNIX and Linux" contains a brief description of these variables.

• "Configuring and Connecting to Data Sources" provides details about driver configuration.

• "Configuring the Product on UNIX/Linux" provides complete information about using the drivers on UNIX
and Linux.

See also
Configuring and Connecting on UNIX and Linux on page 25
Configuring the Product on UNIX/Linux on page 56
Configuring and Connecting to Data Sources on page 56

Driver File Names for UNIX/Linux
The drivers are ODBC API-compliant dynamic link libraries, referred to in UNIX and Linux as shared objects.
The prefix for all 32-bit driver file names is iv. The prefix for all 64-bit driver file names is dd. The driver file
names are lowercase and the extension is .so, the standard form for a shared object. For example, the 32-bit
driver file name is ivorann.so, where nn is the revision number of the driver. However, for the driver on
HP-UX PA-RISC only, the extension is .sl. For example, ivorann.sl.

For the 8.0 version of the 32-bit driver, the file name is:

ivora28.so

For the 8.0 version of the 64-bit driver, the file name is:

ddora28.so

Refer to the readme file for a complete list of installed files.

41Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Support for Multiple Environments

Support for macOS Environments

The following are requirements for the 32- and 64-bit drivers on macOS systems.

32-Bit Driver Requirements for macOS

• All required network software that is supplied by your database system vendors must be 32-bit compliant.

• If your application was built with 32-bit system libraries, you must use the 32-bit driver. If your application
was built with 64-bit system libraries, you must use the 64-bit driver (see "64-bit Driver Requirements").The
database to which you are connecting can be either 32-bit or 64-bit enabled.

• iODBC Driver Manager, version 3.52.7 or higher, is required.

• The following processors are supported:

• Intel

• The following operating systems are supported for your 32-bit driver. All editions are supported unless
otherwise noted.

• macOS v10.12.x (Sierra)

• Mac OS X v10.11.x (El Capitan)

• Mac OS X v10.10.x (Yosemite)

• Mac OS X v10.9.x (Mavericks)

64-bit Driver Requirements for macOS

• All required network software that is supplied by your database system vendors must be 64-bit compliant.

• If your application was built with 32-bit system libraries, you must use 32-bit driver. If your application was
built with 64-bit system libraries, you must use the 64-bit driver (see "32-bit Driver Requirements for macOS").
The database to which you are connecting can be either 32-bit or 64-bit enabled.

• iODBC Driver Manager, version 3.52.7 or higher, is required.

• The following processors are supported:

• Intel

• The following operating systems are supported for your 64-bit driver. All editions are supported unless
otherwise noted.

• macOS v10.12.x (Sierra)

• Mac OS X v10.11.x (El Capitan)

• Mac OS X v10.10.x (Yosemite)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.242

Chapter 3: About the Oracle Wire Protocol Driver

• Mac OS X v10.9.x (Mavericks)

Setup of the Environment and the Driver
On macOS platforms, several environment variables and the system information file must be configured before
the driver can be used. See the following topics for additional information:

• Configuring and Connecting on macOS on page 28 contains a brief description of these variables.

• Data Source Configuration on macOS on page 66 provides details about driver configuration.

• Configuring the Product on macOS on page 65 provides complete information about using the driver on
macOS.

Driver Names for macOS
The drivers are ODBC API-compliant dynamic libraries. The prefix for file names is dd. The prefix for all 32-bit
driver file names is iv. The prefix for all 64-bit driver file names is dd. The driver file names are lowercase and
the extension is .dylib, the standard form for a dynamic library. For example, the 32-bit driver file name is
ivorann.dylib, where nn is the revision number of the driver.

For the 8.0 version of the 32-bit driver, the file name is:

ivora28.dylib

For the 8.0 version of the 64-bit driver, the file name is:

ddora28.dylib

Refer to the installed readme file for a complete list of installed files.

Version String Information
The driver has a version string of the format:

XX.YY.ZZZZ(BAAAA, UBBBB)

or

XX.YY.ZZZZ (bAAAA, uBBBB)

The Driver Manager on UNIX and Linux has a version string of the format:

XX.YY.ZZZZ(UBBBB)

The component for the Unicode conversion tables (ICU) has a version string of the format:

XX.YY.ZZZZ

where:

XX is the major version of the product.

YY is the minor version of the product.

ZZZZ is the build number of the driver or ICU component.

AAAA is the build number of the driver's base component.

43Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Version String Information

BBBB is the build number of the driver's utl component.

For example:

08.00.0001 (b0001, u0002)
 |__| |___| |___|
 Driver Base Utl

On Windows, you can check the version string using the properties window of the driver file. First, right-click
the driver .dll file and select Properties.Then, on the Properties window, select the Details tab.The product
version field lists the version string.

You can always check the version string of a driver on Windows by looking at the About tab of the driver’s
Setup dialog.

On UNIX, Linux and macOS, you can check the version string by using the test loading tool shipped with the
product. This tool, ivtestlib for 32-bit drivers and ddtestlib for 64-bit drivers, is launched using a command-line
and is located in install_directory/bin.

The syntax for the tool is:

ivtestlib shared_object

or

ddtestlib shared_object

For example, for the 32-bit Wire Protocol driver on Linux:

ivtestlib ivora28.so

returns:

08.00.0001 (B0002, U0001)

For example, for the Driver Manager on Linux:

ivtestlib libodbc.so

returns:

08.00.0001 (U0001)

For example, for the 64-bit Driver Manager on Linux:

ddtestlib libodbc.so

returns:

08.00.0001 (U0001)

For example, for 32-bit ICU component on Linux:

ivtestlib libivicu28.so
08.00.0001

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.244

Chapter 3: About the Oracle Wire Protocol Driver

Note: Only the HP-UX version of the tool requires specifying the full path for the test loading tool.The full path
does not need to be specified for other platforms.

getFileVersionString Function

Version string information can also be obtained programmatically through the function getFileVersionString.
This function can be used when the application is not directly calling ODBC functions.

This function is defined as follows and is located in the driver's shared object:

const unsigned char* getFileVersionString();

This function is prototyped in the qesqlext.h file shipped with the product.

Data Types
The following table shows how the Oracle data types are mapped to the standard ODBC data types.

Table 2: Oracle Data Types

ODBCOracle

SQL_LONGVARBINARYBFILE1

SQL_REALBINARY DOUBLE2

SQL_DOUBLEBINARY FLOAT2

SQL_LONGVARBINARYBLOB2, 3

SQL_CHARCHAR

SQL_LONGVARCHARCLOB2, 3

SQL_TYPE_TIMESTAMPDATE

SQL_LONGVARCHARLONG

SQL_LONGVARBINARYLONG RAW

SQL_WVARCHARNCHAR

SQL_WLONGVARCHARNCLOB

SQL_WVARCHARNVARCHAR2

SQL_DOUBLENUMBER

1 Read-Only
2 Supported only on Oracle 10g and higher.
3 Supported in basic file and SecureFiles storage.

45Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Data Types

ODBCOracle

SQL_DECIMALNUMBER (p,s)

SQL_VARBINARYRAW

SQL_TIMESTAMPTIMESTAMP4

SQL_TIMESTAMPTIMESTAMP WITH LOCAL TIMEZONE4, 5

SQL_VARCHARTIMESTAMP WITH TIMEZONE4, 5

SQL_VARCHARVARCHAR2

SQL_LONGVARCHARXMLType6

The Oracle Wire Protocol driver does not support any object types (also known as abstract data types). When
the driver encounters an object type during data retrieval, it returns an Unknown Data Type error (SQL State
HY000).

See "Retrieving Data Type Information" for more information about data types.

See also
Retrieving Data Type Information on page 48

XMLType

The driver supports tables containing columns whose data type is specified as XMLType, except those with
object relational storage.

In the default configuration, the driver supports the XMLType with CLOB storage; however, beginning with
Oracle 11.2.0.2, Oracle changed the default storage type from CLOB to Binary. To support the XMLType with
binary storage on Oracle 12c or later, enable the Support Binary XML connection option
(SupportBinaryXML=1).

As a result of the new default storage type, columns created simply as “XMLType” are not supported by the
driver for database versions later than 11.2.0.1, but earlier than 12c. An attempt to obtain the value of such a
column through the driver results in an error being returned. To avoid this error, change the XML storage type
to CLOB or use the TO_CLOB Oracle function to cast the column.

When inserting or updating XMLType columns, the data to be inserted or updated must be in the form of an
XMLType data type. The database provides functions to construct XMLType data. The xmlData argument to
xmltype() may be specified as a string literal.

4 Supported only on Oracle 9i and higher.
5 Timestamp with timezone mapping changes based on the setting of the Fetch TSWTZ as Timestamp option only on Oracle 10g

R2 and higher.
6 XMLType columns with object relational storage are not supported.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.246

Chapter 3: About the Oracle Wire Protocol Driver

Examples
If the XMLType column is created with the CLOB storage type, then the driver returns it without use of the
special getClobVal function, that is, you can use:

SELECT XML_col FROM table_name...

instead of

SELECT XML_col.getClobVal()...

The following example illustrates using the CLOB storage type:

CREATE TABLE po_xml_tab(
 poid NUMBER(10),
 poDoc XMLTYPE
)
 XMLType COLUMN poDoc
 STORE AS CLOB (
 TABLESPACE lob_seg_ts7

 STORAGE (INITIAL 4096 NEXT 4096)
 CHUNK 4096 NOCACHE LOGGING
)

The next example illustrates how to create a table, insert data, and retrieve data when not using the CLOB
storage type:

CREATE TABLE PURCHASEORDER (PODOCUMENT sys.XMLTYPE);

The PURCHASEORDER table contains one column—PODOCUMENT—with a data type of XMLType
(sys.XMLTYPE). The next step is to insert one purchase order, created by the static function
sys.XMLTYPE.createXML:

INSERT INTO PURCHASEORDER (PODOCUMENT) values (
sys.XMLTYPE.createXML(
'<PurchaseOrder>
 <Reference>BLAKE-2001062514034298PDT</Reference>
 <Actions>
 <Action>
 <User>KING</User>
 <Date/>
 </Action>
 </Actions>
 <Reject/>
 <Requester>David E. Blake</Requester>
 <User>BLAKE</User>
 <CostCenter>S30</CostCenter>
 <ShippingInstructions>
 <name>David E. Blake</name>
 <address>400 Oracle Parkway Redwood Shores, CA, 94065 USA</address>
 <telephone>650 999 9999</telephone>
 </ShippingInstructions>
 <SpecialInstructions>Air Mail</SpecialInstructions>
 <LineItems>
 <LineItem ItemNumber="1">
 <Description>The Birth of a Nation</Description>
 <Part Id="EE888" UnitPrice="65.39" Quantity="31"/>
 </LineItem>
 </LineItems>
</PurchaseOrder>
'));

7 Note that the table space must be created before executing a statement similar to the one used in the example.

47Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Data Types

Use the getClobVal function to retrieve the data:

SELECT p.podocument.getClobVal() FROM PURCHASEORDER p;

Retrieving Data Type Information

At times, you might need to get information about the data types that are supported by the data source, for
example, precision and scale.You can use the ODBC function SQLGetTypeInfo to do this.

On Windows, you can use ODBC Test to call SQLGetTypeInfo against the ODBC data source to return the
data type information.

On all platforms, an application can call SQLGetTypeInfo. Here is an example of a C function that calls
SQLGetTypeInfo and retrieves the information in the form of a SQL result set.

void ODBC_GetTypeInfo(SQLHANDLE hstmt, SQLSMALLINT dataType)
{
 RETCODE rc;

// There are 19 columns returned by SQLGetTypeInfo.
// This example displays the first 3.
// Check the ODBC 3.x specification for more information.
// Variables to hold the data from each column
 char typeName[30];
 short sqlDataType;
 unsigned int columnSize;

 SQLLEN strlenTypeName,
 strlenSqlDataType,
 strlenColumnSize;

 rc = SQLGetTypeInfo(hstmt, dataType);
 if (rc == SQL_SUCCESS) {

// Bind the columns returned by the SQLGetTypeInfo result set.
 rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, &typeName,
 (SDWORD)sizeof(typeName), &strlenTypeName);
 rc = SQLBindCol(hstmt, 2, SQL_C_SHORT, &sqlDataType,
 (SDWORD)sizeof(sqlDataType), &strlenSqlDataType);
 rc = SQLBindCol(hstmt, 3, SQL_C_LONG, &columnSize,
 (SDWORD)sizeof(columnSize), &strlenColumnSize);

// Print column headings
 printf ("TypeName DataType ColumnSize\n");
 printf ("-------------------- ---------- ----------\n");

 do {

// Fetch the results from executing SQLGetTypeInfo
 rc = SQLFetch(hstmt);
 if (rc == SQL_ERROR) {
// Procedure to retrieve errors from the SQLGetTypeInfo function
 ODBC_GetDiagRec(SQL_HANDLE_STMT, hstmt);
 break;
 }

// Print the results
 if ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO)) {
printf ("%-30s %10i %10u\n", typeName, sqlDataType, columnSize);
 }

 } while (rc != SQL_NO_DATA);
 }
}

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.248

Chapter 3: About the Oracle Wire Protocol Driver

See also
ODBC Test on page 168
Data Types on page 45

Isolation and Lock Levels Supported
Oracle supports isolation level 1 (read committed) and isolation level 3 (serializable). Oracle supports record-level
locking.

See also
Locking and Isolation Levels on page 305

Using Parameter Arrays
Beginning with Oracle 9i, Oracle databases natively support parameter arrays, and the Oracle Wire Protocol
driver, in turn, supports them. When designing an application for performance, using native parameter arrays
for bulk inserts or updates, for example, can improve performance. See "Using Arrays of Parameters" for more
information about using arrays of parameters to improve performance.

Note: The Oracle Wire Protocol driver currently does not support the use of BLOB, CLOB, LONG, LONG
RAW, and XMLType data types with array binding.

See also
Using Arrays of Parameters on page 300
Using Bulk Load for Batch Inserts on page 158

49Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Isolation and Lock Levels Supported

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.250

Chapter 3: About the Oracle Wire Protocol Driver

4
Supported Features

This section describes some of the supported features that allow you to take full advantage of the driver.

For details, see the following topics:

• Unicode Support

• Using IP Addresses

• Number of Connections and Statements Supported

• Support for Oracle RAC

• SQL Support

• MTS Support

• OS Authentication

• Stored Procedure Results

• Support of Materialized Views

Unicode Support
The Oracle Wire Protocol driver automatically determines whether the Oracle database is a Unicode database.

See also
Data Types on page 45

51Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using IP Addresses
The driver supports Internet Protocol (IP) addresses in the IPv4 and IPv6 formats.

If your network supports named servers, the server name specified in the data source can resolve to an IPv4
or IPv6 address.

In the following connection string example, the IP address for the Oracle server is specified in IPv6 format:

DRIVER=DataDirect 8.0 Oracle Wire Protocol Driver;
Host=2001:DB8:0000:0000:8:800:200C:417A;PORT=5439;
DB=OracleACCT;UID=JOHN;PWD=XYZZYYou;SERVICENAME=SALES.US.ACME.COM

In addition to the normal IPv6 format, the drivers in the preceding tables support IPv6 alternative formats for
compressed and IPv4/IPv6 combination addresses. For example, the following connection string specifies the
server using IPv6 format, but uses the compressed syntax for strings of zero bits:

DRIVER=DataDirect 8.0 Oracle Wire Protocol Driver;
Host=2001:DB8:0:0:8:800:200C:417A;PORT=5439;
DB=OracleACCT;UID=JOHN;PWD=XYZZYYou;SERVICENAME=SALES.US.ACME.COM

Similarly, the following connection string specifies the server using a combination of IPv4 and IPv6:

DRIVER=DataDirect 8.0 Oracle Wire Protocol Driver;
Host=2001:DB8:0:0:8:800:123.123.78.90;PORT=5439;
DB=OracleACCT;UID=JOHN;PWD=XYZZYYou;SERVICENAME=SALES.US.ACME.COM

For complete information about IPv6 formats, go to the following URL:

http://tools.ietf.org/html/rfc4291#section-2.2

Number of Connections and Statements Supported
The Oracle Wire Protocol driver supports multiple connections and multiple statements per connection.

Support for Oracle RAC
Oracle introduced Real Application Clusters (RAC) with Oracle 9i, and RAC continues to be a key feature for
the current generation of databases. Oracle RAC allows a single physical Oracle database to be accessed by
concurrent instances of Oracle running across several different CPUs.

An Oracle RAC is composed of a group of independent servers, or nodes, that cooperate as a single system.
A cluster architecture such as this provides applications access to more computing power when needed, while
allowing computing resources to be used for other applications when database resources are not as heavily
required. For example, in the event of a sudden increase in network traffic, an Oracle RAC can distribute the
load over many nodes, a feature referred to as server load balancing. Oracle RAC features are available to
you simply by connecting to an Oracle RAC system with your Oracle driver.There is no additional configuration
required.

Connection failover and client load balancing can be used in conjunction with an Oracle RAC system, but they
are not specifically part of Oracle RAC.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.252

Chapter 4: Supported Features

http://tools.ietf.org/html/rfc4291#section-2.2

See also
Using Failover on page 123

SQL Support
The driver supports the core SQL grammar.

MTS Support
On Windows, the driver can take advantage of Microsoft Transaction Server (MTS) capabilities, specifically,
the Distributed Transaction Coordinator (DTC) using the XA Protocol. For a general discussion of MTS and
DTC, refer to the help file of the Microsoft Transaction Server SDK.

Note: The 32-bit driver can operate in a 64-bit Windows environment; however, it does not support DTC in
this environment. Only the 64-bit driver supports DTC in a 64-bit Windows environment.

OS Authentication
Oracle has a feature called OS Authentication that allows you to connect to an Oracle database via the operating
system user name and password.To connect, use a forward slash (/) for the user name and leave the password
blank. To configure the Oracle server, refer to the Oracle server documentation. This feature is valid when
connecting from a data source, a connection string, or a logon dialog box.

Stored Procedure Results
When you enable the Procedure Returns Results connection option, the driver is able to return result sets from
stored procedures/functions. In addition, SQLGetInfo(SQL_MULT_RESULTS_SETS) returns Y and
SQLGetInfo(SQL_BATCH_SUPPORT) returns SQL_BS_SELECT_PROC. If this option is enabled and you
execute a stored procedure that does not return result sets, you incur a small performance penalty.

This feature permits stored procedures to return ref cursors. For example:

Create or replace package GEN_PACKAGE as
CURSOR G1 is select CHARCOL from GTABLE2;
type GTABLE2CHARCOL is ref cursor return G1%rowtype;
end GEN_PACKAGE;
Create or replace procedure GEN_PROCEDURE1 (
 rset IN OUT GEN_PACKAGE.GTABLE2CHARCOL, icol INTEGER) as
begin
 open rset for select CHARCOL from GTABLE2
 where INTEGERCOL <= icol order by INTEGERCOL;
end;

53Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

SQL Support

When executing the stored procedures with result sets, do not include the result set arguments (Oracle ref
cursors) in the list of procedure parameters. The result set returned through the ref cursor is returned as a
normal ODBC result set.

{call GEN_PROCEDURE1 (?)}

where ? is the parameter for the icol argument.

For more information, refer to your Oracle SQL documentation.

Note: When executing a stored procedure that returns both ref cursors and stored procedures, the driver
returns ref cursors first, followed by implicit results.

Support of Materialized Views
When connected to an Oracle 9i or higher server, the Oracle Wire Protocol driver supports the creation of
materialized views. Materialized views are like any other database view with the following additions: the results
are stored as a database object and the results can be updated on a schedule determined by the Create View
statement.

Materialized views improve performance for data warehousing and replication. Refer to the Oracle documentation
for more information about materialized views.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.254

Chapter 4: Supported Features

5
Using the Driver

This chapter guides you through the configuring and connecting to data sources. In addition, it explains how
to use the functionality supported by your driver.

For details, see the following topics:

• Configuring and Connecting to Data Sources

• Performance Considerations

• Using LDAP

• Connecting through a proxy server

• Unexpected Characters

• Using Failover

• Using Client Information

• Using Security

• Using DataDirect Connection Pooling

• Using DataDirect Bulk Load

• Using Bulk Load for Batch Inserts

• Persisting a Result Set as an XML Data File

55Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources
After you install the driver, you configure data sources to connect to the database. See "Getting Started" for
an explanation of different types of data sources. The data source contains connection options that allow you
to tune the driver for specific performance. If you want to use a data source but need to change some of its
values, you can either modify the data source or override its values at connection time through a connection
string.

If you choose to use a connection string, you must use specific connection string attributes. "See Using a
Connection String" and "Connection Option Descriptions" for an alphabetical list of driver connection string
attributes and their initial default values.

See also
Getting Started on page 23
Using a Connection String on page 113
Connection Option Descriptions on page 175

Configuring the Product on UNIX/Linux

This chapter contains specific information about using your driver in the UNIX and Linux environments.

See "Environment Variables" for additional platform information.

See also
Environment Variables on page 56

Environment Variables
The first step in setting up and configuring the driver for use is to set several environment variables. The
following procedures require that you have the appropriate permissions to modify your environment and to
read, write, and execute various files.You must log in as a user with full r/w/x permissions recursively on the
entire Progress DataDirect for ODBC installation directory.

Library Search Path

The library search path variable can be set by executing the appropriate shell script located in the ODBC home
directory. From your login shell, determine which shell you are running by executing:

echo $SHELL

C shell login (and related shell) users must execute the following command before attempting to use
ODBC-enabled applications:

source ./odbc.csh

Bourne shell login (and related shell) users must initialize their environment as follows:

. ./odbc.sh

Executing these scripts sets the appropriate library search path environment variable:

• LD_LIBRARY_PATH on HP-UX IPF, Linux, and Oracle Solaris

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.256

Chapter 5: Using the Driver

• LIBPATH on AIX

• SHLIB_PATH on HP-UX PA-RISC

The library search path environment variable must be set so that the ODBC core components and drivers can
be located at the time of execution. After running the setup script, execute:

env

to verify that the installation_directory/lib directory has been added to your shared library path.

ODBCINI

Setup installs in the product installation directory a default system information file, named odbc.ini, that
contains data sources. See "Data Source Configuration on UNIX/Linux" for an explanation of the odbc.ini
file. The system administrator can choose to rename the file and/or move it to another location. In either case,
the environment variable ODBCINI must be set to point to the fully qualified path name of the odbc.ini file.

For example, to point to the location of the file for an installation on /opt/odbc in the C shell, you would set
this variable as follows:

setenv ODBCINI /opt/odbc/odbc.ini

In the Bourne or Korn shell, you would set it as:

ODBCINI=/opt/odbc/odbc.ini;export ODBCINI

As an alternative, you can choose to make the odbc.ini file a hidden file and not set the ODBCINI variable.
In this case, you would need to rename the file to .odbc.ini (to make it a hidden file) and move it to the
user’s $HOME directory.

The driver searches for the location of the odbc.ini file as follows:

1. The driver checks the ODBCINI variable

2. The driver checks $HOME for .odbc.ini

If the driver does not locate the system information file, it returns an error.

See also
Data Source Configuration on UNIX/Linux on page 58

ODBCINST

Setup installs in the product installation directory a default file, named odbcinst.ini, for use with DSN-less
connections. See "DSN-less Connections" for an explanation of the odbcinst.ini file. The system
administrator can choose to rename the file or move it to another location. In either case, the environment
variable ODBCINST must be set to point to the fully qualified path name of the odbcinst.ini file.

For example, to point to the location of the file for an installation on /opt/odbc in the C shell, you would set
this variable as follows:

setenv ODBCINST /opt/odbc/odbcinst.ini

In the Bourne or Korn shell, you would set it as:

ODBCINST=/opt/odbc/odbcinst.ini;export ODBCINST

57Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

As an alternative, you can choose to make the odbcinst.ini file a hidden file and not set the ODBCINST
variable. In this case, you would need to rename the file to .odbcinst.ini (to make it a hidden file) and
move it to the user’s $HOME directory.

The driver searches for the location of the odbcinst.ini file as follows:

1. The driver checks the ODBCINST variable

2. The driver checks $HOME for .odbcinst.ini

If the driver does not locate the odbcinst.ini file, it returns an error.

See also
DSN-less Connections on page 63

DD_INSTALLDIR

This variable provides the driver with the location of the product installation directory so that it can access
support files. DD_INSTALLDIR must be set to point to the fully qualified path name of the installation directory.

For example, to point to the location of the directory for an installation on /opt/odbc in the C shell, you would
set this variable as follows:

setenv DD_INSTALLDIR /opt/odbc

In the Bourne or Korn shell, you would set it as:

DD_INSTALLDIR=/opt/odbc;export DD_INSTALLDIR

The driver searches for the location of the installation directory as follows:

1. The driver checks the DD_INSTALLDIR variable

2. The driver checks the odbc.ini or the odbcinst.ini files for the InstallDir keyword (see "Configuring
a Data Source in the System Information File" for a description of the InstallDir keyword)

If the driver does not locate the installation directory, it returns an error.

The next step is to test load the driver.

See also
Configuring a Data Source in the System Information File on page 58

Data Source Configuration on UNIX/Linux
In the UNIX and Linux environments, a system information file is used to store data source information. Setup
installs a default version of this file, called odbc.ini, in the product installation directory. This is a plain text
file that contains data source definitions.

Configuring a Data Source in the System Information File

To configure a data source manually, you edit the odbc.ini file with a text editor. The content of this file is
divided into three sections.

At the beginning of the file is a section named [ODBC Data Sources] containing
data_source_name=installed-driver pairs, for example:

Oracle Wire Protocol=DataDirect Oracle Wire Protocol

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.258

Chapter 5: Using the Driver

The driver uses this section to match a data source to the appropriate installed driver.

The [ODBC Data Sources] section also includes data source definitions. The default odbc.ini contains a
data source definition for each driver. Each data source definition begins with a data source name in square
brackets, for example, [Oracle Wire Protocol 2]. The data source definitions contain connection string
attribute=value pairs with default values.You can modify these values as appropriate for your system. See
"Connection Option Descriptions" for descriptions of these attributes. See "Sample odbcinst.ini File" for sample
data sources.

The second section of the file is named [ODBC File DSN] and includes one keyword:

[ODBC File DSN]
DefaultDSNDir=

This keyword defines the path of the default location for file data sources (see "File Data Sources").

Note: This section is not included in the default odbc.ini file that is installed by the product installer. If you
are using file data sources, you must add this section manually.

The third section of the file is named [ODBC] and includes several keywords, for example:

[ODBC]
IANAAppCodePage=4
InstallDir=/opt/odbc
Trace=0
TraceFile=odbctrace.out
TraceDll=/opt/odbc/lib/ivtrc28.so
ODBCTraceMaxFileSize=102400
ODBCTraceMaxNumFiles=10

The IANAAppCodePage keyword defines the default value that all UNIX/Linux drivers use if individual data
sources have not specified a different value. See "IANAAppCodePage" and "Code Page Values" for details.
The default value is 4.

The InstallDir keyword must be included in this section. The value of this keyword is the path to the
installation directory under which the /lib and /locale directories are contained. The installation process
automatically writes your installation directory to the default odbc.ini file.

For example, if you choose an installation location of /opt/odbc, then the following line is written to the
[ODBC] section of the default odbc.ini:

InstallDir=/opt/odbc

Note: If you are using only DSN-less connections through an odbcinst.ini file and do not have an odbc.ini
file, then you must provide [ODBC] section information in the [ODBC] section of the odbcinst.ini file. The
drivers and Driver Manager always check first in the [ODBC] section of an odbc.ini file. If no odbc.ini file
exists or if the odbc.ini file does not contain an [ODBC] section, they check for an [ODBC] section in the
odbcinst.ini file. See "DSN-less Connections" for details.

ODBC tracing allows you to trace calls to ODBC drivers and create a log of the traces for troubleshooting
purposes. The following keywords all control tracing: Trace, TraceFile, TraceDLL,
ODBCTraceMaxFileSize, and ODBCTraceMaxNumFiles.

For a complete description of these keywords and discussion of tracing, see "ODBC Trace".

See also
Connection Option Descriptions on page 175
Sample odbcinst.ini File on page 63

59Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

File Data Sources on page 64
IANAAppCodePage on page 224
Code Page Values on page 267
DSN-less Connections on page 63
ODBC Trace on page 163

Sample Default odbc.ini File

The following is a sample odbc.ini file that Setup installs in the installation directory. All occurrences of
ODBCHOME are replaced with your installation directory path during installation of the file. Values that you
must supply are enclosed by angle brackets (< >). If you are using the installed odbc.ini file, you must supply
the values and remove the angle brackets before that data source section will operate properly. Commented
lines are denoted by the # symbol. This sample shows a 32-bit driver with the driver file name beginning with
iv. A 64-bit driver file would be identical except that driver name would begin with dd and the list of data
sources would include only the 64-bit drivers.

[ODBC Data Sources]
Oracle Wire Protocol=DataDirect 8.0 Oracle Wire Protocol

[Oracle Wire Protocol]
Driver=ODBCHOME/lib/ivora28.so
AccountingInfo=
Action=
AllowedOpenSSLVersions=1.1.1,1.0.2
AlternateServers=
ApplicationName=
ApplicationUsingThreads=1
ArraySize=60000
AuthenticationMethod=1
BulkBinaryThreshold=32
BulkCharacterThreshold=-1
BulkLoadBatchSize=1024
BulkLoadFieldDelimiter=
BulkLoadOptions=0
BulkLoadRecordDelimiter=
CachedCursorLimit=32
CachedDescLimit=0
CatalogIncludesSynonyms=1
CatalogOptions=0
ClientHostName=
ClientID=
ClientUser=
ConnectionReset=0
ConnectionRetryCount=0
ConnectionRetryDelay=3
CredentialsWalletEntry=
CredentialsWalletPassword=
CredentialsWalletPath=
CryptoLibName=
CryptoProtocolVersion=TLSv1.2,TLSv1.1,TLSv1
DataIntegrityLevel=1
DataIntegrityTypes=MD5,SHA1,SHA256,SHA384,SHA512
DefaultLongDataBuffLen=1024
DescribeAtPrepare=0
EditionName=
EnableBulkLoad=0
EnableDescribeParam=0
EnableScrollableCursors=1
EnableServerResultCache=0
EnableStaticCursorsForLongData=0
EncryptionLevel=1
EncryptionMethod=0
EncryptionTypes=AES128,AES192,AES256,DES,3DES112,3DES168,RC4_40,RC4_56,RC4_128,RC4_256
FailoverGranularity=0
FailoverMode=0

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.260

Chapter 5: Using the Driver

FailoverPreconnect=0
FetchTSWTZasTimestamp=0
GSSClient=native
HostName=<Oracle_server>
HostNameInCertificate=
ImpersonateUser=
InitializationString=
KeepAlive=0
KeyPassword=
KeyStore=
KeyStorePassword=
LDAPDistinguishedName=
LoadBalanceTimeout=0
LoadBalancing=0
LOBPrefetchSize=4000
LocalTimeZoneOffset=
LockTimeOut=-1
LoginTimeout=15
LogonID=
MaxPoolSize=100
MinPoolSize=0
Module=
Password=
Pooling=0
PortNumber=<Oracle_server_port>
ProcedureRetResults=0
ProgramID=
PRNGSeedFile=/dev/random
PRNGSeedSource=0
ProxyHost=
ProxyMode=0
ProxyPassword=
ProxyPort=0
ProxyUser=
QueryTimeout=0
ReportCodePageConversionErrors=0
ReportRecycleBin=0
SDUSize=16384
ServerName=<server_name_in_tnsnames.ora>
ServerType=0
ServiceName=
SID=<Oracle_System_Identifier>
SupportBinaryXML=0
SSLLibName=
TimestampEscapeMapping=0
TNSNamesFile=<tnsnames.ora_filename>
TrustStore=
TrustStorePassword=
UseCurrentSchema=1
ValidateServerCertificate=1
WireProtocolMode=2

[ODBC]
IANAAppCodePage=4
InstallDir=ODBCHOME
Trace=0
TraceFile=odbctrace.out
TraceDll=ODBCHOME/lib/ivtrc28.so
ODBCTraceMaxFileSize=102400
ODBCTraceMaxNumFiles=10
[ODBC File DSN]
DefaultDSNDir=
UseCursorLib=0

To modify or create data sources in the odbc.ini file, use the following procedures.

• To modify a data source:

61Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

Using a text editor, open the odbc.ini file.a)

b) Modify the default attributes in the data source definitions as necessary based on your system specifics,
for example, enter the host name and port number of your system in the appropriate location.

Consult the "Oracle Wire Protocol Attribute Names " table in the "Connection Options Descriptions" for
other specific attribute values.

c) After making all modifications, save the odbc.ini file and close the text editor.

Important: The "Connection Options Descriptions" section lists both the long and short names of the
attribute. When entering attribute names into odbc.ini, you must use the long name of the attribute.
The short name is not valid in the odbc.ini file.

• To create a new data source:

a) Using a text editor, open the odbc.ini file.

b) Copy an appropriate existing default data source definition and paste it to another location in the file.

c) Change the data source name in the copied data source definition to a new name. The data source
name is between square brackets at the beginning of the definition, for example, [Oracle Wire
Protocol].

d) Modify the attributes in the new definition as necessary based on your system specifics, for example,
enter the host name and port number of your system in the appropriate location.

Consult the "Oracle Wire Protocol Attribute Names " table in the "Connection Option Descriptions" for
other specific attribute values.

e) In the [ODBC] section at the beginning of the file, add a new data_source_name=installed-driver
pair containing the new data source name and the appropriate installed driver name.

f) After making all modifications, save the odbc.ini file and close the text editor.

Important: The "Oracle Wire Protocol Attribute Names " table in the "Connection Option Descriptions"
section lists both the long and short name of the attribute.When entering attribute names into odbc.ini,
you must use the long name of the attribute. The short name is not valid in the odbc.ini file.

See also
Connection Option Descriptions on page 175

The Example Application
Progress DataDirect ships an application, named example, that is installed in the /samples/example
subdirectory of the product installation directory. Once you have configured your environment and data source,
use the example application to test passing SQL statements.To run the application, enter example and follow
the prompts to enter your data source name, user name, and password.

If successful, a SQL> prompt appears and you can type in SQL statements, such as SELECT * FROM
table_name. If example is unable to connect to the database, an appropriate error message appears.

Refer to the example.txt file in the example subdirectory for an explanation of how to build and use this
application.

For more information, see The Example Application in Progress DataDirect for ODBC Drivers Reference.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.262

Chapter 5: Using the Driver

https://documentation.progress.com/output/DataDirect/odbcreferencehelp/index.html#context/ODBC/example_application

DSN-less Connections
Connections to a data source can be made via a connection string without referring to a data source name
(DSN-less connections). This is done by specifying the DRIVER= keyword instead of the DSN= keyword in a
connection string, as outlined in the ODBC specification. A file named odbcinst.ini must exist when the driver
encounters DRIVER= in a connection string.

Setup installs a default version of this file in the product installation directory (see "ODBCINST" for details about
relocating and renaming this file).This is a plain text file that contains default DSN-less connection information.
You should not normally need to edit this file. The content of this file is divided into several sections.

At the beginning of the file is a section named [ODBC Drivers] that lists installed drivers, for example,

DataDirect 8.0 Oracle Wire Protocol Driver=Installed

This section also includes additional information for each driver.

The final section of the file is named [ODBC]. The [ODBC] section in the odbcinst.ini file fulfills the same
purpose in DSN-less connections as the [ODBC] section in the odbc.ini file does for data source connections.
See "Connection Option Descriptions" for a description of the other keywords this section.

Note: The odbcinst.ini file and the odbc.ini file include an [ODBC] section. If the information in these
two sections is not the same, the values in the odbc.ini [ODBC] section override those of the odbcinst.ini
[ODBC] section.

See also
ODBCINST on page 57
Connection Option Descriptions on page 175

Sample odbcinst.ini File

The following is a sample odbcinst.ini. All occurrences of ODBCHOME are replaced with your installation
directory path during installation of the file. Commented lines are denoted by the # symbol.This sample shows
a 32-bit driver with the driver file name beginning with iv; a 64-bit driver file would be identical except that
driver names would begin with dd.

[ODBC Drivers]
DataDirect 8.0 Oracle Wire Protocol=Installed

[DataDirect 8.0 Oracle Wire Protocol]
Driver=ODBCHOME/lib/ivora28.so
APILevel=1
ConnectFunctions=YYY
DriverODBCVer=3.52
FileUsage=0
HelpRootDirectory=ODBCHOME/help/OracleHelp
Setup=ODBCHOME/lib/ivora28.so
SQLLevel=1

[ODBC]
#This section must contain values for DSN-less connections
#if no odbc.ini file exists. If an odbc.ini file exists,
#the values from that [ODBC] section are used.

IANAAppCodePage=4
InstallDir=ODBCHOME
Trace=0
TraceFile=odbctrace.out
TraceDll=ODBCHOME/lib/ivtrc28.so

63Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

ODBCTraceMaxFileSize=102400
ODBCTraceMaxNumFiles=10

File Data Sources
The Driver Manager on UNIX and Linux supports file data sources. The advantage of a file data source is that
it can be stored on a server and accessed by other machines, either Windows, UNIX, Linux, or macOS. See
"Getting Started" for a general description of ODBC data sources on supported platforms.

A file data source is simply a text file that contains connection information. It can be created with a text editor.
The file normally has an extension of .dsn.

For example, a file data source for the driver would be similar to the following:

[ODBC]
Driver=DataDirect 8.0 Oracle Wire Protocol
Port=1522
HostName=OraServer5
LogonID=JOHN
Servicename=SALES.US.ACME.COM
CatalogOptions=1

It must contain all basic connection information plus any optional attributes. Because it uses the DRIVER=
keyword, an odbcinst.ini file containing the driver location must exist (see "DSN-less Connections").

The file data source is accessed by specifying the FILEDSN= instead of the DSN= keyword in a connection
string, as outlined in the ODBC specification. The complete path to the file data source can be specified in the
syntax that is normal for the machine on which the file is located. For example, on Windows:

FILEDSN=C:\Program Files\Common Files\ODBC\DataSources\Oracleacct.dsn

or, on UNIX and Linux:

FILEDSN=/home/users/john/filedsn/Oracleacct.dsn

or, on macOS:

FILEDSN=/Library/ODBC/filedsn/Oracleacct.dsn

If no path is specified for the file data source, the Driver Manager uses the DefaultDSNDir property, which
is defined in the [ODBC File DSN] setting in the odbc.ini file to locate file data sources (see "Configuring
a Data Source in the System Information File" for details). If the [ODBC File DSN] setting is not defined, the
Driver Manager uses the InstallDir setting in the [ODBC] section of the odbc.ini file.The Driver Manager
does not support the SQLReadFileDSN and SQLWriteFileDSN functions.

As with any connection string, you can specify attributes to override the default values in the data source:

FILEDSN=/home/users/john/filedsn/Oracleacct.dsn;UID=james;PWD=test01

See also
Getting Started on page 23
DSN-less Connections on page 63
Configuring a Data Source in the System Information File on page 58

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.264

Chapter 5: Using the Driver

UTF-16 Applications on UNIX and Linux
Because the DataDirect Driver Manager allows applications to use either UTF-8 or UTF-16 Unicode encoding,
applications written in UTF-16 for Windows platforms can also be used on UNIX and Linux platforms.

The Driver Manager assumes a default of UTF-8 applications; therefore, two things must occur for it to determine
that the application is UTF-16:

• The definition of SQLWCHAR in the ODBC header files must be switched from "char *" to "short *". To do
this, the application uses #define SQLWCHARSHORT.

• The application must set the encoding for the environment or connection using one of the following attributes.
If your application passes UTF-8 encoded strings to some connections and UTF-16 encoded strings to
other connections in the same environment, encoding should be set for the connection only; otherwise,
either method can be used.

• To configure the encoding for the environment, set the ODBC environment attribute
SQL_ATTR_APP_UNICODE_TYPE to a value of SQL_DD_CP_UTF16, for example:

rc = SQLSetEnvAttr(*henv,
SQL_ATTR_APP_UNICODE_TYPE,(SQLPOINTER)SQL_DD_CP_UTF16, SQL_IS_INTEGER);

• To configure the encoding for the connection only, set the ODBC connection attribute
SQL_ATTR_APP_UNICODE_TYPE to a value of SQL_DD_CP_UTF16. For example:

rc = SQLSetConnectAttr(hdbc, SQL_ATTR_APP_UNICODE_TYPE, SQL_DD_CP_UTF16,
SQL_IS_INTEGER);

Configuring the Product on macOS

This chapter contains specific information about using your driver in the macOS environment.

Installing the Driver Manager for macOS
Before you can use the driver, you must install and setup the iODBC Driver Manager, version 3.52.7 or higher,
on your machine. iODBC is an open-source interface that manages data sources and loads DataDirect drivers
for macOS applications. It is the most commonly used Driver Manager for macOS platforms and is included
with some versions of the operating systems. For more information, refer to http://www.iodbc.org/.

The Test Loading Tool
After installing the product, the next step in preparing to use a driver is to test load it.This can be accomplished
using the command-line based tools, ivtestlib (32-bit) and ddtestlib (64-bit), described in this section or the
iODBC Administrator. For more information on testing using the iODBC Administrator, see "Data Source
Configuration through a GUI (macOS)."

The ivtestlib and ddtestlib test loading tool are provided to test load drivers and help diagnose configuration
problems in the macOS environment, such as environment variables not correctly set or missing database
client components.This tool is installed in the /bin subdirectory in the product installation directory. It attempts
to load a specified ODBC driver and prints out all available error information if the load fails.

65Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

http://www.iodbc.org/

For example, if the driver is installed in ~/Library/Progress/DataDirect/ODBC_80_64bit/lib, the
following command attempts to load the Condstart localhide driver, where xx represents the version number
of the driver:

ddtestlib ~/Library/Progress/DataDirect/ODBC_80_64bit/lib/ddoraxx.dylib

If the load is successful, the tool returns a success message along with the version string of the driver. If the
driver cannot be loaded, the tool returns an error message explaining why.

See "Version String Information" for details about version strings.

The next step is to configure a data source through the system information file.

See also
Data Source Configuration through a GUI (macOS) on page 70
Version String Information on page 43

Data Source Configuration on macOS
In the macOS environment, system information files, called odbc.ini, are used to store data source information.
Two versions of the file, one for storing User DSN information and one for System DSN information, are placed
in separate library directories on your machine (See “Configuration Through the System Information File” for
locations of the odbc.ini files). The odbc.ini files are plain text files that contain data source definitions.
Data source definitions can be created or modified by editing the odbc.ini files using a text editor or the
graphical user interface (GUI) provided by the iODBC Administrator. For instructions on configuring data sources
through the odbc.ini file, see "Configuration through the System Information (odbc.ini) File". See "Data
Source Configuration through a GUI (macOS)" for details on using a GUI.

See also
Configuration Through the System Information (odbc.ini) File on page 66
Data Source Configuration through a GUI (macOS) on page 70

Configuration Through the System Information (odbc.ini) File

To configure a data source manually, edit the odbc.ini file that corresponds to the type of data source you
want to use. On macOS platforms, the iODBC driver manager places two odbc.ini files on your machine:
one for storing User DSN information and another for storing System DSN information. The location of this file
determines the type of DSNs defined in the file. The following directories contain the odbc.ini file for their
respective DSN type:

For User DSNs: /Users/user_name/Library/ODBC/

For System DSNs: /Library/ODBC/

By default, the installer program creates a default data source entry for the driver in the User DSN odbc.ini
file.To create a System DSN, you will need to manually create a data source entry for the driver in the correlating
odbc.ini file. See "File Data Sources" for information on creating a File DSN.

To edit the file, navigate to the appropriate directory and open the odbc.ini file using a text editor.The content
of this file is divided into three sections.

At the beginning of the file is a section named [ODBC Data Sources] containing
data_source_name=installed-driver pairs, for example:

Oracle Wire Protocol=DataDirect Oracle Wire Protocol

The driver uses this section to match a data source to the appropriate installed driver.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.266

Chapter 5: Using the Driver

The [ODBC Data Sources] section also includes data source definitions. The default odbc.ini contains
a data source definition for each driver. Each data source definition begins with a data source name in square
brackets, for example, [Oracle Wire Protocol 2]. The data source definitions contain connection string
attribute=value pairs with default values.You can modify these values as appropriate for your system. See
"Connection Option Descriptions" for descriptions of these attributes. See "Sample odbcinst.ini File" for sample
data sources.

The second section of the file is named [ODBC File DSN] and includes one keyword:

[ODBC File DSN]
DefaultDSNDir=

This keyword defines the path of the default location for file data sources (see "File Data Sources").

Note: This section is not included in the default odbc.ini file that is installed by the product installer.You
must add this section manually.

The third section of the file is named [ODBC] and includes several keywords, for example:

[ODBC]
IANAAppCodePage=4
InstallDir=/Library/Progress/DataDirect/ODBC_80_64bit

The IANAAppCodePage keyword defines the default value that all UNIX/Linux drivers use if individual data
sources have not specified a different value. See "IANAAppCodePage" and "Code Page Values" for details.
The default value is 4.

The InstallDir keyword must be included in this section. The value of this keyword is the path to the
installation directory under which the /lib and /locale directories are contained. The installation process
automatically writes your installation directory to the default odbc.ini file.

For example, if you choose an installation location of /usr/local, then the following line is written to the
[ODBC] section of the default odbc.ini:

InstallDir=/usr/local

Note: If you are using only DSN-less connections through an odbcinst.ini file and do not have an odbc.ini
file, then you must provide [ODBC] section information in the [ODBC] section of the odbcinst.ini file. The
drivers and Driver Manager always check first in the [ODBC] section of an odbc.ini file. If no odbc.ini file
exists or if the odbc.ini file does not contain an [ODBC] section, they check for an [ODBC] section in the
odbcinst.ini file. See "DSN-less Connections" for details.

See also
File Data Sources on page 73
Connection Option Descriptions on page 175
Sample odbcinst.ini File on page 73
IANAAppCodePage on page 224
Code Page Values on page 267
DSN-less Connections on page 72
ODBC Trace on page 163

67Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

Sample Default odbc.ini File

The following is a sample odbc.ini file. All occurrences of ODBCHOME are replaced with your installation
directory path during installation of the file. Values that you must supply are enclosed by angle brackets (< >).
If you are using the installed odbc.ini file, you must supply the values and remove the angle brackets before
that data source section will operate properly. Commented lines are denoted by the # symbol.

[ODBC Data Sources]
Oracle Wire Protocol=DataDirect 8.0 Oracle Wire Protocol

[Oracle Wire Protocol]
Driver=ODBCHOME/lib/ddora28.dylib
AccountingInfo=
Action=
AllowedOpenSSLVersions=1.1.1,1.0.2
AlternateServers=
ApplicationName=
ApplicationUsingThreads=1
ArraySize=60000
AuthenticationMethod=1
CachedCursorLimit=32
CachedDescLimit=0
CatalogIncludesSynonyms=1
CatalogOptions=0
ClientHostName=
ClientID=
ClientUser=
ConnectionRetryCount=0
ConnectionRetryDelay=3
CredentialsWalletEntry=
CredentialsWalletPassword=
CredentialsWalletPath=
CryptoLibName=
CryptoProtocolVersion=TLSv1.2,TLSv1.1,TLSv1
DataIntegrityLevel=1
DataIntegrityTypes=MD5,SHA1,SHA256,SHA384,SHA512
DefaultLongDataBuffLen=1024
DescribeAtPrepare=0
EditionName=
EnableDescribeParam=0
EnableScrollableCursors=1
EnableServerResultCache=0
EnableStaticCursorsForLongData=0
EncryptionLevel=1
EncryptionMethod=0
EncryptionTypes=AES128,AES192,AES256,DES,3DES112,3DES168,RC4_40,RC4_56,RC4_128,RC4_256
FailoverGranularity=0
FailoverMode=0
FailoverPreconnect=0
FetchTSWTZasTimestamp=0
GSSClient=native
HostName=<Oracle_server>
HostNameInCertificate=
InitializationString=
KeepAlive=0
KeyPassword=
KeyStore=
KeyStorePassword=
LoadBalancing=0
LOBPrefetchSize=4000
LocalTimeZoneOffset=
LockTimeOut=-1
LoginTimeout=15
LogonID=
Module=0
Password=
PortNumber=<Oracle_server_port>
ProcedureRetResults=0

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.268

Chapter 5: Using the Driver

ProgramID=
PRNGSeedFile=/dev/random
PRNGSeedSource=0
QueryTimeout=0
ReportCodePageConversionErrors=0
ReportRecycleBin=0
SDUSize=16384
ServerName=<server_name_in_tnsnames.ora>
ServerType=0
ServiceName=
SID=<Oracle_System_Identifier>
SupportBinaryXML=0
SSLLibName=
TimestampEscapeMapping=0
TNSNamesFile=<tnsnames.ora_filename>
TrustStore=
TrustStorePassword=
UseCurrentSchema=1
ValidateServerCertificate=1
WireProtocolMode=2

[ODBC]
IANAAppCodePage=4
InstallDir=ODBCHOME

[ODBC File DSN]
DefaultDSNDir=

To modify or create data sources in the odbc.ini file, use the following procedures.

• To modify a data source:

a) Using a text editor, open the odbc.ini file.

b) Modify the default attributes in the data source definitions as necessary based on your system specifics,
for example, enter the host name and port number of your system in the appropriate location.

Consult the "Oracle Wire Protocol Attribute Names" table in "Connection Option Descriptions" for other
specific attribute values.

c) After making all modifications, save the odbc.ini file and close the text editor.

Important: The "Connection Option Description" section lists both the long and short names of the
attribute. When entering attribute names into odbc.ini, you must use the long name of the attribute.
The short name is not valid in the odbc.ini file.

• To create a new data source:

a) Using a text editor, open the odbc.ini file.

b) Copy an appropriate existing default data source definition and paste it to another location in the file.

c) Change the data source name in the copied data source definition to a new name. The data source
name is between square brackets at the beginning of the definition, for example, [Oracle Wire
Protocol].

d) Modify the attributes in the new definition as necessary based on your system specifics, for example,
enter the host name and port number of your system in the appropriate location.

Consult the "Oracle Wire Protocol Attribute Names" table in "Connection Option Descriptions" for other
specific attribute values.

69Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

e) In the [ODBC] section at the beginning of the file, add a new data_source_name=installed-driver
pair containing the new data source name and the appropriate installed driver name.

f) After making all modifications, save the odbc.ini file and close the text editor.

Important: The "Oracle Wire Protocol Attribute Names" table in "Connection Option Descriptions" lists
both the long and short name of the attribute. When entering attribute names into odbc.ini, you must
use the long name of the attribute. The short name is not valid in the odbc.ini file.

Data Source Configuration through a GUI (macOS)

You must have the iODBC Administrator installed and set up on your machine. For information on downloading
the iODBC Administrator, refer to http://www.iodbc.org/.

On macOS platforms, data sources are stored in the odbc.ini file. The iODBC Administrator allows you to
create and modify these data sources using a graphical user interface, as described in this section.

To configure a data source:

1. Open iODBC Administrator.app.

The iODBC Data Source Administrator dialog box appears.

2. Click either the User DSN, System DSN, or File DSN tab to display a list of data sources.

• User DSN: If you are configuring an existing user data source, select the appropriate data source name
and click Configure to display the Setup dialog box.

If you are configuring a new user data source, click Add to display a list of installed drivers. Select the
appropriate driver and click Finish to display the Setup dialog box.

• System DSN: If you are configuring an existing system data source, select the data source name and
click Configure to display the Setup dialog box.

If you are configuring a new system data source, click Add to display a list of installed drivers. Select
the driver and click Finish to display the Setup dialog box.

• File DSN: If you are configuring an existing file data source, select the appropriate data source file and
click Configure to display the Setup dialog box.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.270

Chapter 5: Using the Driver

http://www.iodbc.org/

To configure a new file data source, click Add to display a list of installed drivers. Select the appropriate
driver and click Advanced to specify attributes; otherwise, click Next to proceed. Specify a name for
the data source and click Next.Verify the data source information; then, click Finish to display the driver
Setup dialog box.

Note: If you want to set a default directory for File DSNs, select the directory from the Directories list;
then, click Set Dir. The next time that you open the Administrator, it displays data source files from this
directory.

See "Getting Started" for an explanation of different types of data sources.

3. The data source Setup dialog box appears. For existing data sources, the dialog is prepopulated with a list
of the connection option attribute-value pairs currently stored in the odbc.ini file.

Configure the data source by adding and/or editing connection option attributes and values:

• To add a new connection option attribute, click the Add button .Then, in the new row, type the attribute
name in the Keyword field and the desired valid value in the Value field.

• To configure an existing option, edit the value field that corresponds to the connection option attribute
you want to modify.

For descriptions of connection option attributes and valid values, see "Connection Option Descriptions."

4. Click OK to save your changes and close the Setup dialog.

5. Optionally, test your connection. On the iODBC Data Source Administrator dialog, highlight your data source
from the list; then, click Test.

6. A logon dialog box appears. Enter your username and password; then, click Ok. Note that the information
you enter in the logon dialog box during a test connect is not saved.

7. Click OK. When you click OK, the values you have specified become the defaults when you connect to the
data source.You can change these defaults by using this procedure to reconfigure your data source.You
can also override these defaults by connecting to the data source using a connection string with alternate
values.

71Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

See also
Getting Started on page 23
Connection Option Descriptions on page 175

Tracing Using the iODBC Data Source Administrator

The Tracing tab allows you to trace calls to ODBC drivers and create a log of the traces for troubleshooting
purposes.

To specify the path and name of the trace log file, type the path and name in the Trace File field or click Browse
to select a log file. If no location is specified, the trace log resides in the working directory of the application
you are using.

The iODBC Data Source Administrator ships with a trace library that is enabled by default. If you want to use
a custom library instead, type the path and name of the library in the Custom trace library field or click Browse
to select the library.

To enable tracing, indicate the frequency of tracing for the "When to trace" option on the Trace tab. If you select
All the time, tracing continues until you disable it. Be sure to turn off tracing when you are finished reproducing
the issue because tracing decreases the performance of your ODBC application.

After making changes on the Tracing tab, click Apply for them to take effect.

For a more complete discussion of tracing, see to "Diagnostic Tools."

When you are finished with the iODBC Administrator, click OK or Cancel. If you click OK, any changes you
have made to the Trace tab are accepted and the Administrator closes.

See also
Diagnostic Tools on page 163

The example Application
Progress DataDirect ships an application, named example, that is installed in the /samples/example
subdirectory of the product installation directory. After you have configured your environment and data source,
you can use the example application to test passing SQL statements.

Before you can begin testing, you will need to compile the application using the make files installed in the
/example directory.You can then run the application by entering example from the Terminal and following
the prompts to enter your data source name, user name, and password.

If successful, a SQL> prompt appears and you can type in SQL statements, such as SELECT * FROM
table_name. If example is unable to connect to the database, an appropriate error message appears.

Refer to the example.txt file in the example subdirectory for an explanation of how to build and use this
application.

DSN-less Connections
Connections to a data source can be made via a connection string without referring to a data source name
(DSN-less connections). This is done by specifying the "DRIVER=" keyword instead of the "DSN=" keyword in
a connection string, as outlined in the ODBC specification. A file named odbcinst.ini must exist when the
driver encounters DRIVER= in a connection string.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.272

Chapter 5: Using the Driver

The product installer places a default version of this file in the /Library/ODBC directory (see "ODBCINST"
for details about relocating and renaming this file) . This is a plain text file that contains default DSN-less
connection information.You should not normally need to edit this file. The content of this file is divided into
several sections.

At the beginning of the file is a section named [ODBC Drivers] that lists installed drivers, for example,

DataDirect 8.0 Oracle Wire Protocol=Installed

This section also includes additional information for each driver.

The final section of the file is named [ODBC]. The [ODBC] section in the odbcinst.ini file fulfills the same
purpose in DSN-less connections as the [ODBC] section in the odbc.ini file does for data source connections.
See "Configuration Through the System Information (odbc.ini) File" for a description of the other keywords this
section.

Note: The odbcinst.ini file and the odbc.ini file include an [ODBC] section. If the information in these two
sections is not the same, the values in the odbc.ini [ODBC] section override those of the odbcinst.ini
[ODBC] section.

See also
ODBCINST on page 75
Configuration Through the System Information (odbc.ini) File on page 66

Sample odbcinst.ini File

The following is a sample odbcinst.ini. All occurrences of ODBCHOME are replaced with your installation
directory path during installation of the file. Commented lines are denoted by the # symbol.This sample shows
a 32-bit driver with the driver file name beginning with iv; a 64-bit driver file would be identical except that
driver names would begin with dd.

[ODBC Drivers]
DataDirect 8.0 Oracle Wire Protocol=Installed

[DataDirect 8.0 Oracle Wire Protocol]
Driver=ODBCHOME/lib/ivora28.dylib
APILevel=1
ConnectFunctions=YYY
DriverODBCVer=3.52
FileUsage=0
HelpRootDirectory=ODBCHOME/help/OracleHelp
Setup=ODBCHOME/lib/ivora28.dylib
SQLLevel=1

[ODBC]
#This section must contain values for DSN-less connections
#if no odbc.ini file exists. If an odbc.ini file exists,
#the values from that [ODBC] section are used.

IANAAppCodePage=4
InstallDir=ODBCHOME

File Data Sources
The Driver Manager on macOS supports file data sources. The advantage of a file data source is that it can
be stored on a server and accessed by other machines, regardless of platform. See "Getting Started" for a
general description of ODBC data sources.

73Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

A file data source is simply a text file that contains connection information. It can be created with a text editor.
The file normally has an extension of .dsn.

For example, a file data source for the driver would be similar to the following:

[ODBC]
Driver=DataDirect 8.0 Oracle Wire Protocol
Port=1522
HostName=OraServer5
LogonID=JOHN
Servicename=SALES.US.ACME.COM
CatalogOptions=1

It must contain all basic connection information plus any optional attributes. Because it uses the "DRIVER="
keyword, an odbcinst.ini file containing the driver location must exist (see "DSN-less Connections").

The file data source is accessed by specifying the "FILEDSN=" instead of the "DSN=" keyword in a connection
string, as outlined in the ODBC specification. The complete path to the file data source can be specified in the
syntax that is normal for the machine on which the file is located. For example, on Windows:

FILEDSN=C:\Program Files\Common Files\ODBC\DataSources\Oracleacct.dsn

or, on UNIX and Linux:

FILEDSN=/home/users/john/filedsn/Oracleacct.dsn

or, on macOS:

FILEDSN=/Library/ODBC/filedsn/Oracleacct.dsn

If no path is specified for the file data source, the Driver Manager uses the DefaultDSNDir property, which is
defined in the [ODBC File DSN] setting in the odbc.ini file to locate file data sources (see "Data Source
Configuration on macOS" for details). If the [ODBC File DSN] setting is not defined, the Driver Manager
uses the InstallDir setting in the [ODBC] section of the odbc.ini file. The Driver Manager does not support
the SQLReadFileDSN and SQLWriteFileDSN functions.

As with any connection string, you can specify attributes to override the default values in the data source:

FILEDSN=/opt/odbc/filedsn/Oracleacct.dsn;UID=james;PWD=test01

See also
Getting Started on page 23
DSN-less Connections on page 72
Configuration Through the System Information (odbc.ini) File on page 66

Supported Character Encoding for macOS Applications
The iODBC Driver Manager allows macOS applications to use ASCII or UTF-32 character encoding.The Driver
Manager automatically determines the encoding format used by the application based on whether the application
calls ASCII or Unicode (wide or "W") functions.

Environment Variables
Most users do not need to configure their environment variables after installation. On macOS platforms, the
location of system files, such as the odbc.ini and odbcinst.ini files, are standardized, making environment
variable configuration unnecessary in most scenarios. Environment variables can be modified if necessary,
but they must be set for each application that relies on the variable as well as the system.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.274

Chapter 5: Using the Driver

The following procedure allows you to set the ODBCINST variable, if required by your application. For details
on configuring additional environment variables, refer to the macOS documentation.

Note: To complete these procedures, you must have the appropriate permissions to modify your environment
and to read, write, and execute various files.You must log in as a user with full r/w/x permissions recursively
on the entire Progress DataDirect for ODBC installation directory and affected directories.

ODBCINST

The installer program installs in the /Library/ODBC directory a default file, named odbcinst.ini, for use
with DSN-less connections. However, if the user does not have access to the system library, the installer falls
back to the /Users/user_name/Library/ODBC directory. See "DSN-less Connections" for an explanation
of the odbcinst.ini file. The system administrator can choose to rename the file or move it to another
location. In either scenario, the environment variable ODBCINST must be set to point to the fully qualified path
name of the odbcinst.ini file.

For example, to point to the location of the file for an installation on /Users/john_smith/Library/myapp
in the Terminal, you would set this variable as follows:

setenv ODBCINST /Users/john_smith/Library/myapp/odbcinst.ini

As an alternative, you can choose to make the odbcinst.ini file a hidden file and not set the ODBCINST
variable. In this case, you would need to rename the file to .odbcinst.ini (to make it a hidden file) and
move it to the user's home directory, for example /Users/john_smith/.

The Driver Manager searches for the location of the odbcinst.ini file as follows:

1. The Driver Manager checks the ODBCINST variable

2. The Driver Manager checks the /Library/ODBC and /Users/user_name/Library/ODBC directories
for .odbcinst.ini

If the driver does not locate the odbcinst.ini file, it returns an error.

See also
DSN-less Connections on page 72

Data Source Configuration on Windows

 On Windows, data sources are stored in the Windows Registry.You can configure and modify data sources
through the ODBC Administrator using a driver Setup dialog box, as described in this section.

When the driver is first installed, the values of its connection options are set by default. These values appear
on the driver Setup dialog box tabs when you create a new data source.You can change these default values
by modifying the data source. In the following procedure, the description of each tab is followed by a table that
lists the connection options for that tab and their initial default values. This table links you to a complete
description of the options and their connection string attribute equivalents. The connection string attributes are
used to override the default values of the data source if you want to change these values at connection time.

To configure an Oracle data source:

1. Start the ODBC Administrator by selecting its icon from the DataDirect Connect program group.

2. Select a tab:

75Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

• User DSN: If you are configuring an existing user data source, select the data source name and click
Configure to display the driver Setup dialog box.

If you are configuring a new user data source, click Add to display a list of installed drivers. Select the
driver and click Finish to display the driver Setup dialog box.

• System DSN: If you are configuring an existing system data source, select the data source name and
click Configure to display the driver Setup dialog box.

If you are configuring a new system data source, click Add to display a list of installed drivers. Select
the driver and click Finish to display the driver Setup dialog box.

• File DSN: If you are configuring an existing file data source, select the data source file and click Configure
to display the driver Setup dialog box.

If you are configuring a new file data source, click Add to display a list of installed drivers; then, select
a driver. Click Advanced if you want to specify attributes; otherwise, click Next to proceed. Specify a
name for the data source and click Next. Verify the data source information; then, click Finish to display
the driver Setup dialog box.

3. The General tab of the Setup dialog box appears by default.

Figure 1: General tab

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.276

Chapter 5: Using the Driver

On this tab, provide values for the options in the following table; then, click Apply. The table provides links
to descriptions of the connection options. The General tab displays fields that are required for creating a
data source. The fields on all other tabs are optional, unless noted otherwise.

DescriptionConnection Options: General

Specifies the name of a data source in your Windows Registry or
odbc.ini file.

Default: None
Data Source Name on page 207

Specifies an optional long description of a data source. This
description is not used as a runtime connection attribute, but does
appear in the ODBC.INI section of the Registry and in the
odbc.ini file.

Default: None

Description on page 208

The name or the IP address of the server to which you want to
connect.

Default: None
Host on page 222

Specifies the port number of the server listener.

Default: None
Port Number on page 237

The Oracle System Identifier that refers to the instance of Oracle
running on the server.

Default: None

Note: This option is mutually exclusive with the LDAP Distinguished
Name, Service Name, Server Name, and TNSNames File options.

Note: If no values are specified for the LDAP Distinguished Name,
SID, Service Name, and TNSNames options, the driver attempts
to connect to the ORCL SID by default.

SID on page 252

The Oracle service name that specifies the database used for the
connection.The service name is a string that is the global database
name—a name that is comprised of the database name and domain
name, for example: sales.us.acme.com

Default: None

Note: This option is mutually exclusive with the LDAP Distinguished
Name, Service Name, Server Name, and TNSNames File options.

Note: If no values are specified for the LDAP Distinguished Name,
SID, Service Name, and TNSNames options, the driver attempts
to connect to the ORCL SID by default.

Service Name on page 251

77Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

DescriptionConnection Options: General

Specifies the distinguished name for the LDAP entry that contains
your connection information. Using an LDAP entry provides
simplified maintenance by allowing you to centrally store and access
connection information. LDAP entries specify the Host, Port Number,
and Service Name or SID for the target database using the
orclNetDescString attribute.

Note: This option is mutually exclusive with the Host, Port Number,
SID, and Service Name options.

Note: If a value is specified for this option, the Host and Port
Number options are used to specify the host and port number for
the LDAP directory server.

LDAP Distinguished Name on page
228

Specifies a net service name that exists in the tnsnames.ora file.
The corresponding net service name entry in the tnsnames.ora
file is used to obtain Host, Port Number, and Service Name or SID
information.

Default: None

Note: This option is mutually exclusive with the LDAP Distinguished
Name, Host, Port Number, SID, and Service Name options.

Server Name on page 249

Specifies the name of the tnsnames.ora file.

Default: None

Note: If no values are specified for the LDAP Distinguished Name,
SID, Service Name, and TNSNames options, the driver attempts
to connect to the ORCL SID by default.

TNSNames File on page 256

The name of the Oracle edition the driver uses when establishing
a connection. Oracle 11g R2 and higher allows your database
administrator to create multiple editions of schema objects so that
your application can still use those objects while the database is
being upgraded. This option is only valid for Oracle 11g R2 and
higher databases and tells the driver which edition of the schema
objects to use.

Default: None

Edition Name on page 209

4. At any point during the configuration process, you can click Test Connect to attempt to connect to the data
source using the connection options specified in the driver Setup dialog box. A logon dialog box appears
(see "Using a Logon Dialog Box" for details). Note that the information you enter in the logon dialog box
during a test connect is not saved.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.278

Chapter 5: Using the Driver

5. To further configure your driver, click on the following tabs. The corresponding sections provide details on
the fields specific to each configuration tab:

• Advanced tab allows you to configure advanced behavior.

• Security tab allows you to specify security data source settings.

• Performance tab allows you to specify performance data source settings.

• Failover tab allows you to specify failover data source settings.

• Pooling tab allows you to specify connection pooling settings.

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

• Client Monitoring tab allows you to specify additional data source settings.

• Advanced Security tab allows you to specify settings for Oracle Advanced Security (OAS).

• Proxy tab allows you to specify settings for connecting through an HTTP proxy.

6. Click OK. When you click OK, the values you have specified become the defaults when you connect to the
data source.You can change these defaults by using this procedure to reconfigure your data source.You
can override these defaults by connecting to the data source using a connection string with alternate values.

See also
Using a Logon Dialog Box on page 113

79Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

Advanced Tab
The Advanced tab allows you to specify additional data source settings.The fields are optional unless otherwise
noted. On this tab, provide values for the options in the following table; then, click Apply.

Figure 2: Advanced tab

DescriptionConnection Options: Advanced

A value to alter local time zone information.The default is an empty
string, which means that the driver determines local time zone
information from the operating system. If it is not available from the
operating system, the driver defaults to using the setting on the
Oracle server.

Valid values are specified as offsets from GMT as follows:
(–)HH:MM. For example, -08:00 equals GMT minus 8 hours.

Default: None

Local Timezone Offset on page 231

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.280

Chapter 5: Using the Driver

DescriptionConnection Options: Advanced

The maximum length of data (in KB) the driver can fetch from long
columns in a single round trip and the maximum length of data that
the driver can send using the SQL_DATA_AT_EXEC parameter.

Default: 1024

Default Buffer Size for Long/LOB
Columns (in Kb) on page 207

Determines whether the driver works with applications using multiple
ODBC threads.

If enabled, the driver works with single-threaded and multi-threaded
applications.

If disabled, the driver does not work with multi-threaded applications.
If using the driver with single-threaded applications, this value
avoids additional processing required for ODBC thread-safety
standards.

Default: Enabled

Application Using Threads on page 187

Determines whether the driver describes the SQL statement at
prepare time.

If enabled, the driver describes the SQL statement at prepare time.

If disabled, the driver does not describe the SQL statement at
prepare time.

Default: Disabled

Describe at Prepare on page 208

Determines whether SQL_NULL_DATA is returned for the result
columns REMARKS and COLUMN_DEF.

If enabled, the result column REMARKS (for the catalog functions
SQLTables and SQLColumns) and the result column
COLUMN_DEF (for the catalog function SQLColumns) return actual
values. Enabling this option reduces the performance of your
catalog (SQLColumns and SQLTables) queries.

If disabled, SQL_NULL_DATA is returned for the result columns
REMARKS and COLUMN_DEF.

Default: Disabled

Catalog Options on page 195

Enables the driver to support XMLType with binary storage on
servers running Oracle 12c and higher.

If enabled, the driver supports XMLType with binary storage by
negotiating server and client capabilities during connection time.
As a result of this negotiation, decoded data associated with
XMLType columns is returned in an in-line fashion without locators.

If disabled, the driver does not support XMLType with binary storage
and returns the error "This column type is not currently supported
by this driver."

Default: Disabled

Support Binary XML on page 254

81Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

DescriptionConnection Options: Advanced

Determines whether the driver supports the SQLDescribeParam
function, which allows an application to describe parameters in
SQL statements and in stored procedure calls.

If set to enabled, the driver supports SQLDescribeParam. If using
Microsoft Remote Data Objects (RDO) to access data, you must
use this value.

If disabled, the driver does not support SQLDescribeParam and
returns the error: unimplemented function.

Default: Disabled

Enable SQLDescribeParam on page 213

Determines whether support is provided for reporting objects that
are in the Oracle Recycle Bin.

If enabled, support is provided for reporting objects that are in the
Oracle Recycle Bin.

If disabled, the driver does not return tables contained in the recycle
bin in the result sets returned from SQLTables and SQLColumns.
Functionally, this means that the driver filters out any results whose
Table name begins with BIN$.

Default: Disabled

Report Recycle Bin on page 248

Determines whether the driver returns result sets from stored
procedures/functions.

If enabled, the driver returns result sets from stored
procedures/functions. When set to 1 and you execute a stored
procedure that does not return result sets, you will incur a small
performance penalty.

If disabled, the driver does not return result sets from stored
procedures.

Default: Disabled

Procedure Returns Results on page 244

Determines whether the driver sets the RESULT_CACHE_MODE
session parameter to FORCE.

If enabled, the driver sets the RESULT_CACHE_MODE session
parameter to FORCE.

If disabled, the driver does not sets the RESULT_CACHE_MODE
session parameter.

Default: Disabled

Enable Server Result Cache on page 212

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.282

Chapter 5: Using the Driver

DescriptionConnection Options: Advanced

Determines whether the driver returns column values with the
timestamp with time zone data type as the ODBC data type
SQL_TYPE_TIMESTAMP or SQL_VARCHAR.

If enabled, the driver returns column values with the timestamp
with time zone data type as the ODBC type
SQL_TYPE_TIMESTAMP.The time zone information in the fetched
value is truncated. Use this value if your application needs to
process values the same way as TIMESTAMP columns.

If disabled, the driver returns column values with the timestamp
with time zone data type as the ODBC data type SQL_VARCHAR.
Use this value if your application requires the time zone information
in the fetched value.

Default: Disabled

Fetch TSWTZ as Timestamp on page 220

Specifies whether the driver enables TCPKeepAlive.TCPKeepAlive
maintains idle TCP connections by periodically passing packets
between the client and server.

If disabled, the driver does not enable TCPKeepAlive.

If enabled, the driver enables TCPKeepAlive.

Default: Disabled

TCP Keep Alive on page 254

Determines how the driver maps Date, Time, and Timestamp
literals.

If set to 0 - Oracle Version Specific, the driver determines whether
to use the TO_DATE or TO_TIMESTAMP function based on the
version of the Oracle server to which it is connected. If the driver
is connected to an 8.x server, it maps the Date, Time, and
Timestamp literals to the TO_DATE function. If the driver is
connected to a 9.x or higher server, it maps these escapes to the
TO_TIMESTAMP function.

If set to 1 - Oracle 8x Compatible, the driver always uses the
Oracle 8.x TO_DATE function as if connected to an Oracle 8.x
server.

Default: 0 - Oracle Version Specific

Timestamp Escape Mapping on page 255

83Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

DescriptionConnection Options: Advanced

Specifies how the driver handles code page conversion errors that
occur when a character cannot be converted from one character
set to another.

If set to 0 - Ignore Errors, the driver substitutes 0x1A for each
character that cannot be converted and does not return a warning
or error.

If set to 1 - Return Error, the driver returns an error instead of
substituting 0x1A for unconverted characters.

If set to 2 - Return Warning, the driver substitutes 0x1A for each
character that cannot be converted and returns a warning.

Default: 0 - Ignore Errors

Report Codepage Conversion Errors on
page 247

Determines whether the connection is established using a shared
or dedicated server process (dedicated thread on Windows).

If set to 0 - Server Default, the driver uses the default server
process set on the server.

If set to 1 - Shared, the server process used is retrieved from a
pool. The socket connection between the application and server is
made to a dispatcher process on the server. This setting allows
there to be fewer processes than the number of connections,
reducing the need for server resources. Use this value when a
server must handle a large number of connections.

If set to 2 - Dedicated, a server process is created to service only
that connection. When that connection ends, so does the process
(UNIX and Linux) or thread (Windows). The socket connection is
made directly between the application and the dedicated server
process or thread. When connecting to UNIX and Linux servers, a
dedicated server process can provide significant performance
improvement, but uses more resources on the server. When
connecting to Windows servers, the server resource penalty is
insignificant. Use this value if you have a batch environment with
a low number of connections.

Default: 0 - Server Default

Server Process Type on page 250

A SQL command that is issued immediately after connecting to the
database to manage session settings.

Default: None

Initialization String on page 226

The number of seconds the driver waits for a connection to be
established before returning control to the application and
generating a timeout error.

Default: 15

Login Timeout on page 233

The number of seconds for the default query timeout for all
statements that are created by a connection.

Default: 0 (the query does not time out.)

Query Timeout on page 246

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.284

Chapter 5: Using the Driver

Extended Options: Type a semi-colon separated list of connection options and their values. Use this
configuration option to set the value of undocumented connection options that are provided by Progress
DataDirect Customer Support.You can include any valid connection option in the Extended Options string, for
example:

Database=Server1;UndocumentedOption1=value [;UndocumentedOption2=value;]

If the Extended Options string contains option values that are also set in the setup dialog or data source, the
values of the options specified in the Extended Options string take precedence. However, connection options
that are specified on a connection string override any option value specified in the Extended Options string.

Translate: Click Translate to display the Select Translator dialog box, which lists the translators specified in
the ODBC Translators section of the Registry. Progress DataDirect provides a translator named OEM to ANSI
that translates your data from the IBM PC character set to the ANSI character set.

Select a translator; then, click OK to close this dialog box.

If you finished configuring your driver, proceed to Step 6 on page 79 in "Data Source Configuration through a
GUI (Windows)." Optionally, you can further configure your driver by clicking on the following tabs.The following
sections provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Security Tab on page 85 allows you to specify security data source settings.

• Performance Tab on page 90 allows you to specify performance data source settings.

• Failover Tab on page 94 allows you to specify failover data source settings.

• Pooling Tab on page 97 allows you to specify connection pooling settings.

• Bulk tab on page 99 allows you to specify data source settings for DataDirect Bulk Load.

• Client Monitoring Tab on page 106 allows you to specify additional data source settings.

• Advanced Security Tab on page 108 allows you to specify settings for Oracle Advanced Security (OAS).

• Proxy tab allows you to specify settings for connecting through an HTTP proxy.

See also
Data Source Configuration on Windows on page 75

Security Tab
The Security tab allows you to specify your security settings. The fields are optional unless otherwise noted.
On this tab, provide values for the options in the following table; then, click Apply.

85Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

See "Using Security" for a general description of authentication and encryption and their configuration
requirements.

Figure 3: Security tab

DescriptionConnection Options: Security

The default user ID that is used to connect to your database.Your
ODBC application may override this value or you may override it in
the logon dialog box or connection string.

Default: None

User Name on page 259

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.286

Chapter 5: Using the Driver

DescriptionConnection Options: Security

Specifies the proxy user ID used for impersonation. The value for
Impersonate User determines your identity and permissions when
executing queries. When a value is specified for this option, the
driver authenticates according to the setting of the Authentication
Method option; then, after establishing a connection, the driver
attempts to reauthenticate as the destination user. Note that the
administrator must grant CONNECT THROUGH permission to the
authenticated user in order to impersonate the destination user;
otherwise, an error is returned.

Default: None

Impersonate User on page 225

Specifies the method the driver uses to authenticate the user to the
server when a connection is established.

If set to 1 - Encrypt Password, the driver sends the user ID in clear
text and an encrypted password to the server for authentication.

If set to 3 - Client Authentication, the driver uses client
authentication when establishing a connection.The database server
relies on the client to authenticate the user and does not provide
additional authentication.

If set to 4 - Kerberos Authentication, the driver uses Kerberos
authentication.This method supports both Windows Active Directory
Kerberos and MIT Kerberos environments.

When set to 5 - Kerberos with UID & PWD, the driver uses both
Kerberos authentication and user ID and password authentication.
The driver first authenticates the user using Kerberos. If a user ID
and password are specified, the driver reauthenticates using the
user name and password supplied. An error is generated if a user
ID and password are not specified.

If set to 6 - NTLM, the driver uses NTLMv1 authentication for
Windows clients.

If set to 11 - SSL, the driver uses SSL certificate information to
authenticate the client with the server when using Oracle Wallet.
The User Name and Password options should not be specified.
See "Oracle Wallet SSL Authentication" for additional requirements.

If set to 12 - SSL with UID & Password, the driver uses user
ID/password and SSL authentication to connect with the server
when using Oracle Wallet. See "Oracle Wallet SSL Authentication"
for additional requirements.

If set to 14 - Wallet UID & PWD, the driver authenticates to the
server using a user ID and password retrieved from Oracle Wallet.
See "Oracle Wallet Password Store" for additional requirements.

Default: 1 - Encrypt Password

Authentication Method on page 188

87Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

DescriptionConnection Options: Security

Specifies the fully-qualified path to the Oracle Wallet file in which
your database credential information is stored.When Authentication
Method is set to 14 - Wallet UID & PWD, the driver retrieves the
database user name and password from this file.

See "Oracle Wallet Password Store" for a complete list of options
and settings required for the Oracle Wallet Password Store feature.

Credentials Wallet Path on page 202

Specifies the string value used to identify database credential
information stored in an Oracle Wallet.When Authentication Method
is set to 14 - Wallet UID & PWD, the driver retrieves the user ID
and password associated with the specified value from the wallet
and uses them to authenticate to the server. This value provides a
method for the correct user ID and password to be retrieved when
there are multiple pairs in a wallet.

See "Oracle Wallet Password Store" for a complete list of options
and settings required for the Oracle Wallet Password Store feature.

Credentials Wallet Entry on page 201

The name of the GSS client library that the driver uses to
communicate with the Key Distribution Center (KDC).

Default: native

GSS Client Library on page 222

The method the driver uses to encrypt data sent between the driver
and the database server.

If set to 0 - No Encryption, data is not encrypted.

If set to 1 - SSL Auto, data is encrypted using the SSL protocols
specified in the Crypto Protocol Version connection option.

Default: 0 - No Encryption

Encryption Method on page 216

A comma-separated list of the cryptographic protocols to use when
SSL is enabled, where the highest version supported by the server
is used. If none of the specified protocols are supported by the
database server, the connection fails and the driver returns an error.

Default: TLSv1.2,TLSv1.1,TLSv1

Crypto Protocol Version on page 203

If enabled, the driver validates the certificate that is sent by the
database server. Any certificate from the server must be issued by
a trusted CA in the truststore file. If the Host Name In Certificate
option is specified, the driver also validates the certificate using a
host name.The Host Name In Certificate option provides additional
security against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was
requested.

If disabled, the driver does not validate the certificate that is sent
by the database server.The driver ignores any truststore information
specified by the Trust Store and Trust Store Password options.

Default: Enabled

Validate Server Certificate on page 259

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.288

Chapter 5: Using the Driver

DescriptionConnection Options: Security

The absolute path of the truststore file name to be used when SSL
is enabled (EncryptionMethod=1) and server authentication is
used.

Default: None

Trust Store on page 257

Specifies the password that is used to access the truststore file
when SSL is enabled (EncryptionMethod=1) and server
authentication is used.

Default: None

Trust Store Password on page 258

The absolute path of the keystore file to be used when SSL is
enabled (EncryptionMethod=1) and SSL client authentication is
enabled on the database server.

Default: None

Key Store on page 227

The password used to access the keystore file when SSL is enabled
(EncryptionMethod=1) and SSL client authentication is enabled
on the database server.

Default: None

Key Store Password on page 228

The password used to access the individual keys in the keystore
file when SSL is enabled (Encryption Method=1) and SSL client
authentication is enabled on the database server. Keys stored in a
keystore can be individually password-protected. To extract the key
from the keystore, the driver must have the password of the key.

Default: None

Key Password on page 226

A host name for certificate validation when SSL encryption is enabled
(EncryptionMethod=1) and validation is enabled (Validate Server
Certificate=1).

Default: None

Host Name In Certificate on page 223

If you finished configuring your driver, proceed to Step 6 on page 79 in "Data Source Configuration through a
GUI (Windows)." Optionally, you can further configure your driver by clicking on the following tabs.The following
sections provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Performance tab allows you to specify performance data source settings.

• Failover tab allows you to specify failover data source settings.

• Pooling tab allows you to specify connection pooling settings.

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

• Client Monitoring allows you to specify additional data source settings.

89Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

• Advanced Security tab allows you to specify settings for Oracle Advanced Security (OAS).

• Proxy tab allows you to specify settings for connecting through an HTTP proxy.

See also
Using Security on page 133
Oracle Wallet Password Store on page 136
Oracle Wallet SSL Authentication on page 135
Data Source Configuration on Windows on page 75

Performance Tab
The Performance tab allows you to specify your performance data source settings. On this tab, provide values
for the options in the following table; then, click Apply. The fields are optional unless otherwise noted.

Figure 4: Performance tab

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.290

Chapter 5: Using the Driver

DescriptionConnection Options: Performance

The number of bytes the driver can fetch in a single network round
trip. Larger values increase throughput by reducing the number of
times the driver fetches data across the network. Smaller values
increase response time, as there is less of a delay waiting for the
server to transmit data.

Default: 60000

Array Size on page 188

Specifies the amount of time, in seconds, the Oracle server waits
for a lock to be released before generating an error when
processing a Select...For Update statement.

If set to -1, the server waits indefinitely for the lock to be released.

If set to 0, the server generates an error immediately and does not
wait for the lock to time out.

If set to x, the server waits for the specified number of seconds for
the lock to be released.

Default: -1

Lock Timeout on page 232

Specifies whether the driver optimizes network traffic to the Oracle
server.

If set to 1, the driver operates in normal wire protocol mode without
optimizing network traffic.

If set to 2, the driver optimizes network traffic to the Oracle server
for result sets that contain repeating data in some or all of the
columns, and the repeating data is in consecutive rows. It also
optimizes network traffic if the application is updating or inserting
images, pictures, or long text or binary data.

Default: 2

Wire Protocol Mode on page 261

When enabled, the call for SQLProcedures is optimized, but only
procedures owned by the current user are returned.

When disabled, the driver does not limit the procedures returned.

Default: Enabled

Use Current Schema for SQLProcedures
on page 258

Determines whether synonyms are included in calls to
SQLProcedures, SQLStatistics, and SQLProcedureColumns.

If enabled, synonyms are included in calls to SQLProcedures,
SQLStatistics, and SQLProcedureColumns.

If disabled, synonyms are excluded (a non-standard behavior) and
performance is thereby improved.

Default: Enabled

Catalog Functions Include Synonyms on
page 194

91Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

DescriptionConnection Options: Performance

Determines whether scrollable cursors, both Keyset and Static,
are enabled for the data source.

If set to enabled, scrollable cursors are enabled for the data source.

If set to disabled, scrollable cursors are not enabled.

Default: Enabled

Enable Scrollable Cursors on page 212

Determines whether the driver supports Long columns when using
a static cursor. Enabling this option causes a performance penalty
at the time of execution when reading Long data.

If enabled, the driver supports Long columns when using a static
cursor.

If disable, the driver does not support Long columns when using
a static cursor.

Default: Disabled

Enable Static Cursors for Long Data on
page 214

Specifies the number of Oracle Cursor Identifiers that the driver
stores in cache. A Cursor Identifier is needed for each concurrent
open Select statement.

Default: 32

Cached Cursor Limit on page 193

Specifies the number of descriptions that the driver saves for Select
statements. These descriptions include the number of columns,
data type, length, and scale for each column.The matching is done
by an exact-text match through the FROM clause.

Default: 0

Cached Description Limit on page 193

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.292

Chapter 5: Using the Driver

DescriptionConnection Options: Performance

Specifies the size of prefetch data the server returns for BLOBs
and CLOBs. LOB Prefetch Size is supported for Oracle database
versions 12.1.0.1 and higher.

If set to -1, the property is disabled.

If set to 0, the server returns only LOB meta-data such as LOB
length and chunk size with the LOB locator during a fetch operation.

If set to x, the server returns LOB meta-data and the beginning of
LOB data with the LOB locator during a fetch operation. This can
have significant performance impact, especially for small LOBs
which can potentially be entirely prefetched, because the data is
available without having to go through the LOB protocol.

Default: 4000

LOB Prefetch Size on page 231

Specifies the size in bytes of the Session Data Unit (SDU) that the
driver requests when connecting to the server. The SDU size is
equivalent to the maximum number of bytes in a database protocol
packets sent across the network. The setting of this option serves
only as a suggestion to the database server. The actual SDU is
negotiated with the database server.

Default: 16384

SDU Size on page 248

If you finished configuring your driver, proceed to Step 6 on page 79 in "Data Source Configuration through a
GUI." Optionally,you can further configure your driver by clicking on the following tabs. The following sections
provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Security tab allows you to specify security data source settings.

• Failover tab allows you to specify failover data source settings.

• Pooling tab allows you to specify connection pooling settings.

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

• Client Monitoring tab allows you to specify additional data source settings.

• Advanced Security tab allows you to specify settings for Oracle Advanced Security (OAS).

• Proxy tab allows you to specify settings for connecting through an HTTP proxy.

See also
Data Source Configuration on Windows on page 75

93Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

Failover Tab
The Failover tab allows you to specify your failover data source settings. On this tab, provide values for the
options in the following table; then, click Apply. The fields are optional unless otherwise noted. See "Using
Failover" for a general description of failover and its related connection options.

Figure 5: Failover tab

DescriptionConnection Options: Failover

Determines whether the driver uses client load balancing in its attempts
to connect to the database servers (primary and alternate).

If enabled, the driver uses client load balancing and attempts to connect
to the database servers (primary and alternate servers) in random order.

If disabled, the driver does not use client load balancing and connects
to each server based on their sequential order (primary server first, then,
alternate servers in the order they are specified).

Default: Disabled

Load Balancing on page 229

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.294

Chapter 5: Using the Driver

DescriptionConnection Options: Failover

The number of times the driver retries connection attempts to the primary
database server, and if specified, alternate servers until a successful
connection is established.

Default: 0

Connection Retry Count on page 199

Specifies the number of seconds the driver waits between connection
retry attempts when Connection Retry Count is set to a positive integer.

If set to 0, there is no delay between retries.

If set to x, the driver waits the specified number of seconds between
connection retry attempts.

Default: 3

Connection Retry Delay on page 200

A list of alternate database servers to which the driver tries to connect
if the primary database server is unavailable. Specifying a value for this
option enables connection failover for the driver. The value you specify
must be in the form of a string that defines the physical location of each
alternate server. All of the other required connection information for each
alternate server is the same as what is defined for the primary server
connection. For additional information, see "Alternate Servers".

Default: None

Alternate Servers on page 186

Specifies the type of failover method the driver uses.

If set to 0 - Connection, the driver provides failover protection for new
connections only.

If set to 1 - Extended Connection, the driver provides failover protection
for new and lost connections, but not any work in progress.

If set to 2 - Select, the driver provides failover protection for new and
lost connections. In addition, it preserves the state of work performed
by the last Select statement executed.

Failover Mode on page 219

95Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

DescriptionConnection Options: Failover

Determines whether the driver fails the entire failover process or
continues with the process if errors occur while trying to reestablish a
lost connection.

If set to 0 - Non-Atomic, the driver continues with the failover process
and posts any errors on the statement on which they occur.

If set to 1 - Atomic the driver fails the entire failover process if an error
is generated as the result of anything other than executing and
repositioning a Select statement. If an error is generated as a result of
repositioning a result set to the last row position, the driver continues
with the failover process, but generates a warning that the Select
statement must be reissued.

If set to 2 - Atomic Including Repositioning, the driver fails the entire
failover process if any error is generated as the result of restoring the
state of the connection or the state of work in progress.

If set to 3 - Disable Integrity Check, the driver does not verify that the
rows that were restored during the failover process match the original
rows. This value applies only when Failover Mode is set to 2 - Select.

Default: 0 - Non-Atomic

Failover Granularity on page 218

Specifies whether the driver tries to connect to the primary and an
alternate server at the same time.

If disabled, the driver tries to connect to an alternate server only when
failover is caused by an unsuccessful connection attempt or a lost
connection.

If enabled, the driver tries to connect to the primary and an alternate
server at the same time. This can be useful if your application is
time-sensitive and cannot absorb the wait for the failover connection to
succeed.

Default: Disabled

Failover Preconnect on page 220

If you finished configuring your driver, proceed to Step 6 on page 79 in "Data Source Configuration through a
GUI (Windows)." Optionally, you can further configure your driver by clicking on the following tabs.The following
sections provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Security tab allows you to specify security data source settings.

• Performance tab allows you to specify performance data source settings.

• Pooling tab allows you to specify connection pooling settings.

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

• Client Monitoring tab allows you to specify additional data source settings.

• Advanced Security tab allows you to specify settings for Oracle Advanced Security (OAS).

• Proxy tab allows you to specify settings for connecting through an HTTP proxy.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.296

Chapter 5: Using the Driver

See also
Using Failover on page 123
Alternate Servers on page 186
Data Source Configuration on Windows on page 75

Pooling Tab
The Pooling Tab allows you to specify your pooling data source settings. On this tab, provide values for the
options in the following table; then, click Apply. The fields are optional unless otherwise noted. See "Using
DataDirect Connection Pooling" for a general description of connection pooling.

Figure 6: Pooling tab

97Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

DescriptionConnection Options: Pooling

Specifies whether to use the driver’s connection pooling.

If enabled, the driver uses connection pooling.

If disabled, the driver does not use connection pooling.

Default: Disabled

Connection Pooling on page 198

Determines whether the state of connections that are removed from
the connection pool for reuse by the application is reset to the initial
configuration of the connection.

If enabled, the state of connections removed from the connection
pool for reuse by an application is reset to the initial configuration of
the connection. Resetting the state can negatively impact performance
because additional commands must be sent over the network to the
server to reset the state of the connection.

If disabled, the state of connections is not reset.

Default: Disabled

Connection Reset on page 198

The maximum number of connections allowed within a single
connection pool. When the maximum number of connections is
reached, no additional connections can be created in the connection
pool.

Default: 100

Max Pool Size on page 234

The minimum number of connections that are opened and placed in
a connection pool, in addition to the active connection, when the pool
is created. The connection pool retains this number of connections,
even when some connections exceed their Load Balance Timeout
value.

Default: 0 (no connections are opened in addition to the current
existing connection.)

Min Pool Size on page 234

Specifies the number of seconds to keep inactive connections open
in a connection pool. An inactive connection is a database session
that is not associated with an ODBC connection handle, that is, a
connection in the pool that is not in use by an application.

Default: 0 (inactive connections are kept open.)

LoadBalance Timeout on page 230

If you finished configuring your driver, proceed to Step 6 on page 79 in "Data Source Configuration through a
GUI (Windows)." Optionally,you can further configure your driver by clicking on the following tabs.The following
sections provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Security tab allows you to specify security data source settings.

• Performance tab allows you to specify performance data source settings.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.298

Chapter 5: Using the Driver

• Failover tab allows you to specify failover data source settings.

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

• Client Monitoring tab allows you to specify additional data source settings.

• Advanced Security tab allows you to specify settings for Oracle Advanced Security (OAS).

• Proxy tab allows you to specify settings for connecting through an HTTP proxy.

See also
Using DataDirect Connection Pooling on page 145
Data Source Configuration on Windows on page 75

Bulk tab
The Bulk Tab allows you to specify DataDirect Bulk Load data source settings. On this tab, provide values for
the options in the following table; then, click Apply. The fields are optional unless otherwise noted. See "Using
DataDirect Bulk Load" for more information.

Figure 7: Bulk tab

99Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

DescriptionConnection Options: Bulk

Specifies the bulk load method.

If enabled, the driver uses the database bulk load protocol when an
application executes an INSERT with multiple rows of parameter data.
If the protocol cannot be used, the driver returns a warning.

If disabled, the driver uses standard parameter arrays.

Default: Disabled

Enable Bulk Load on page 210

Toggles options for the bulk load process.

If enabled, the driver stops a bulk load operation when a value that
would cause an index to be invalidated is loaded. For example, if a
value is loaded that violates a unique or non-null constraint, the driver
stops the bulk load operation and discards all data being loaded,
including any data that was loaded prior to the problem value.

If disabled, the bulk load operation continues even if a value that would
cause an index to be invalidated is loaded.

Default: Disabled

No Index Errors

Specifies the character that the driver will use to delimit the field entries
in a bulk load data file.

Default: None

Field Delimiter on page 221

Specifies the character that the driver will use to delimit the record
entries in a bulk load data file.

Default: None

Record Delimiter on page 246

The maximum size, in KB, of binary data that is exported to the bulk
data file.

If set to -1, all binary data, regardless of size, is written to the bulk
data file, not to an external file.

If set to 0, all binary data, regardless of size, is written to an external
file, not the bulk data file. A reference to the external file is written to
the bulk data file.

If set to x, any binary data exceeding this specified number of KB is
written to an external file, not the bulk data file. A reference to the
external file is written to the bulk data file.

Default: None

Bulk Binary Threshold on page 190

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2100

Chapter 5: Using the Driver

DescriptionConnection Options: Bulk

The number of rows that the driver sends to the database at a time
during bulk operations. This value applies to all methods of bulk
loading.

Default: 1024

Batch Size on page 189

The maximum size, in KB, of character data that is exported to the
bulk data file.

If set to -1, all character data, regardless of size, is written to the bulk
data file, not to an external file.

If set to 0, all character data regardless of size, is written to an external
file, not the bulk data file. A reference to the external file is written to
the bulk data file.

If set to x, any character data exceeding this specified number of KB
is written to an external file, not the bulk data file. A reference to the
external file is written to the bulk data file.

Default: -1

Bulk Character Threshold on page 191

If your application is already coded to use parameter array batch functionality, you can leverage DataDirect
Bulk Load features through the Enable Bulk Load connection option. Enabling this option automatically converts
the parameter array batch operation to use the database bulk load protocol.

If you are not using parameter array batch functionality, you can export data to a bulk load data file, verify the
metadata of the bulk load configuration file against the structure of the target table, and bulk load data to a
table. Use the following steps to accomplish these tasks.

1. To export data from a table to a bulk load data file, click Export Table from the Bulk tab. The Export Table
dialog box appears.

Figure 8: Export Table dialog box

Both a bulk data file and a bulk configuration file are produced by exporting a table. The configuration file
has the same name as the data file, but with an XML extension. See "Using DataDirect Bulk Load" for details
about these files.

101Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

The bulk export operation can create a log file and can also export to external files. See "External Overflow
Files" for more information. The export operation can be configured such that if any errors or warnings
occur:

• The operation always completes.

• The operation always terminates.

• The operation terminates after a certain threshold of warnings or errors is exceeded.

Table Name: A string that specifies the name of the source database table containing the data to be exported.

Export Filename: A string that specifies the path (relative or absolute) and file of the bulk load data file to
which the data is to be exported. It also specifies the file name of the bulk configuration file. The file name
must be the fully qualified path to the bulk data file. These files must not already exist; if one of both of them
already exists, an error is returned.

Log Filename: A string that specifies the path (relative or absolute) and file name of the bulk log file. The
log file is created if it does not exist. The file name must be the fully qualified path to the log file. Events
logged to this file are:

• Total number of rows fetched

• A message for each row that failed to export

• Total number of rows that failed to export

• Total number of rows successfully exported

Information about the load is written to this file, preceded by a header. Information about the next load is
appended to the end of the file.

If you do not supply a value for Log Filename, no log file is created.

Error Tolerance: A value that specifies the number of errors to tolerate before an operation terminates. A
value of 0 indicates that no errors are tolerated; the operation fails when the first error is encountered.

The default of -1 means that an infinite number of errors is tolerated.

Warning Tolerance: A value that specifies the number of warnings to tolerate before an operation terminates.
A value of 0 indicates that no warnings are tolerated; the operation fails when the first warning is encountered.

The default of -1 means that an infinite number of warnings is tolerated.

Code Page: A value that specifies the code page value to which the driver must convert all data for storage
in the bulk data file. See "Character Set Conversions" for more information.

The default value on Windows is the current code page of the machine. On UNIX/Linux/macOS, the default
value is 4 (ISO 8559-1 Latin-1).

Click Export Table to connect to the database and export data to the bulk data file or click Cancel.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2102

Chapter 5: Using the Driver

Click Export Table to connect to the database and export data to the bulk data file or click Cancel.

2. To verify the metadata of the bulk load configuration file against the structure of the target database table,
click Verify from the Bulk tab. See "Verification of the Bulk Load Configuration File" for details. The ODBC
Oracle Wire Protocol Verify Driver Setup dialog box appears.

Figure 9: ODBC Oracle Wire Protocol Verify Driver Setup dialog box

Table Name: A string that specifies the name of the target database table into which the data is to be loaded.

Configuration Filename: A string that specifies the path (relative or absolute) and file name of the bulk
configuration file. The file name must be the fully qualified path to the configuration file.

Click Verify to verify table structure or click Cancel.

3. To bulk load data from the bulk data file to a database table, click Load Table from the Bulk tab. The Load
File dialog box appears.

Figure 10: Load File dialog box

The load operation can create a log file and can also create a discard file that contains rows rejected during
the load. The discard file is in the same format as the bulk load data file. After fixing reported issues in the
discard file, the bulk load can be reissued using the discard file as the bulk load data file.

103Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

The export operation can be configured such that if any errors or warnings occur:

• The operation always completes.

• The operation always terminates.

• The operation terminates after a certain threshold of warnings or errors is exceeded.

If a load fails, the Load Start and Load Count options can be used to control which rows are loaded when
a load is restarted after a failure.

Table Name: A string that specifies the name of the target database table into which the data is loaded.

Load Data Filename: A string that specifies the path (relative or absolute) and file name of the bulk data
file from which the data is loaded. The file name must be the fully qualified path to the bulk data file.

Configuration Filename: A string that specifies the path (relative or absolute) and file name of the bulk
configuration file. The file name must be the fully qualified path to the configuration file.

Log Filename: A string that specifies the path (relative or absolute) and file name of the bulk log file. The
file name must be the fully qualified path to the log file. Specifying a value for Log Filename creates the file
if it does not already exist. Events logged to this file are:

• Total number of rows read

• Message for each row that failed to load

• Total number of rows that failed to load

• Total number of rows successfully loaded

Information about the load is written to this file, preceded by a header. Information about the next load is
appended to the end of the file.

If you do not specify a value for Log Filename, no log file is created.

Discard Filename: A string that specifies the path (relative or absolute) and file name of the bulk discard
file. The file name must be the fully qualified path to the discard file. Any row that cannot be inserted into
database as result of bulk load is added to this file, with the last row rejected added to the end of the file.

Information about the load is written to this file, preceded by a header. Information about the next load is
appended to the end of the file.

If you do not specify a value for Discard Filename, a discard file is not created.

Error Tolerance: A value that specifies the number of errors to tolerate before an operation terminates. A
value of 0 indicates that no errors are tolerated; the operation fails when the first error is encountered.

The default of -1 means that an infinite number of errors is tolerated.

Load Start: A value that specifies the first row to be loaded from the data file. Rows are numbered starting
with 1. For example, when Load Start is 10, the first 9 rows of the file are skipped and the first row loaded
is row 10. This option can be used to restart a load after a failure.

The default value is 1.

Read Buffer Size (KB): A value that specifies the size, in KB, of the buffer that is used to read the bulk
data file for a bulk load operation.

The default value is 2048.

Warning Tolerance: A value that specifies the number of warnings to tolerate before an operation terminates.
A value of 0 indicates that no warnings are tolerated; the operation fails when the first warning is encountered.

The default of -1 means that an infinite number of warnings is tolerated.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2104

Chapter 5: Using the Driver

Load Count: A value that specifies the number of rows to be loaded from the data file. The bulk load
operation loads rows up to the value of Load Count from the file to the database. It is valid for Load Count
to specify more rows than exist in the data file. The bulk load operation completes successfully when either
the number of rows specified by the Load Count value has been loaded or the end of the data file is reached.
This option can be used in conjunction with Load Start to restart a load after a failure.

The default value is the maximum value for SQLULEN. If set to 0, no rows are loaded.

Click Load Table to connect to the database and load the table or click Cancel.

If you finished configuring your driver, proceed to Step 6 on page 79 in "Data Source Configuration through a
GUI (Windows)." Optionally,you can further configure your driver by clicking on the following tabs.The following
sections provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Security tab allows you to specify security data source settings.

• Performance tab allows you to specify performance data source settings.

• Failover tab allows you to specify failover data source settings.

• Pooling tab allows you to specify connection pooling settings.

• Client Monitoring tab allows you to specify additional data source settings.

• Advanced Security tab allows you to specify settings for Oracle Advanced Security (OAS).

• Proxy tab allows you to specify settings for connecting through an HTTP proxy.

See also
Using DataDirect Bulk Load on page 149
External Overflow Files on page 156
Character Set Conversions on page 156
Verification of the Bulk Load Configuration File on page 154
Data Source Configuration on Windows on page 75

105Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

Client Monitoring Tab
The Client Monitoring tab allows you to specify additional data source settings. On this tab, provide values for
the options in the following table; then, click Apply. The fields are optional unless otherwise noted. See "Using
Client Information" for more information.

Figure 11: Client Monitoring tab

DescriptionConnection Options: Client
Monitoring

Accounting information to be stored in the database. This value sets the
CLIENT_INFO value of the V$SESSION table on the server. This value is
used by the client information feature.

Default: None

Accounting Info on page 183

The current action (Select, Insert, Update, or Delete, for example) within the
current module. This value sets the ACTION column of the V$SESSION
table on the server. This value is used by the client information feature.

Default: None

Action on page 184

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2106

Chapter 5: Using the Driver

DescriptionConnection Options: Client
Monitoring

The name of the application to be stored in the database. This value sets
the dbms_session value in the database and the PROGRAM value of the
V$SESSION table on the server.This value is used by the client information
feature.

Default: None

Application Name on page 186

The host name of the client machine to be stored in the database.This value
sets the MACHINE value in the V$SESSION table on the server. This value
is used by the client information feature.

Default: None

Client Host Name on page 195

Additional information about the client to be stored in the database. This
value sets the CLIENT_IDENTIFIER value in the V$SESSION table on the
server. This value is used by the client information feature.

Default: None

Client ID on page 196

The user ID to be stored in the database.This value sets the OSUSER value
in the V$SESSION table on the server. This value is used by the client
information feature.

Default: None

Client User on page 197

Provides additional information about the client to be stored in the database.
This value sets the CLIENT_IDENTIFIER value in the V$SESSION table on
the server. This value is used by the client information feature.

Default: None

Module on page 235

The product and version information of the driver on the client to be stored
in the database. This value sets the PROCESS value in the V$SESSION
table on the server. This value is used by the client information feature.

Default: None

Program ID on page 245

If you finished configuring your driver, proceed to Step 6 on page 79 in "Data Source Configuration through a
GUI (Windows)." Optionally,you can further configure your driver by clicking on the following tabs.The following
sections provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Security tab allows you to specify security data source settings.

• Performance tab allows you to specify performance data source settings.

• Failover tab allows you to specify failover data source settings.

• Pooling tab allows you to specify connection pooling settings.

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

107Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

• Advanced Security tab allows you to specify settings for Oracle Advanced Security (OAS).

• Proxy tab allows you to specify settings for connecting through an HTTP proxy.

See also
Using Client Information on page 132
Data Source Configuration on Windows on page 75

Advanced Security Tab
The Advanced Security tab allows you to specify settings for Oracle Advanced Security (OAS). On this tab,
provide values for the options in the following table; then, click Apply. The fields are optional unless otherwise
noted.

Figure 12: Advanced Security tab

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2108

Chapter 5: Using the Driver

DescriptionConnection Options: Advanced
Security

Specifies a preference on whether to use encryption on data being
sent between the driver and the database server.

If set to 0 - Rejected, or if no match is found between the driver
and server encryption types, data sent between the driver and the
database server is not encrypted or decrypted. The connection
fails if the database server specifies REQUIRED.

If set to 1 - Accepted, encryption is used on data sent between
the driver and the database server if the database server requests
or requires it.

If set to 2 - Requested, data sent between the driver and the
database server is encrypted and decrypted if the database server
permits it.

If set to 3 - Required, data sent between the driver and the
database server must be encrypted and decrypted.The connection
fails if the database server specifies REJECTED.

Default: 1 - Accepted

Encryption Level on page 215

Specifies the encryption algorithms to use if Oracle Advanced
Security encryption is enabled using the Encryption Level
connection property.

Default: All listed encryption algorithms are selected.

Encryption Types on page 217

109Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

DescriptionConnection Options: Advanced
Security

Specifies a preference for the data integrity to be used on data
sent between the driver and the database server. The connection
fails if the database server does not have a compatible integrity
algorithm.

If set to 0 - Rejected, a data integrity check on data sent between
the driver and the database server is refused.The connection fails
if the database server specifies REQUIRED.

If set to 1 - Accepted, a data integrity check can be made on data
sent between the driver and the database server. Data integrity is
used if the database server requests or requires it.

If set to 2 - Requested, the driver enables a data integrity check
on data sent between the driver and the database server if the
database server permits it.

If set to 3 - Required, a data integrity check must be performed
on data sent between the driver and the database server. The
connection fails if the database server specifies REJECTED.

See "Encryption and Data Integrity" for more information.

Default: 1 - Accepted

Data Integrity Level on page 205

Determines the method the driver uses to protect against attacks
that intercept and modify data being transmitted between the client
and server.You can enable data integrity protection without
enabling encryption.

If multiple values are specified and Oracle Advanced Security data
integrity is enabled using the Data Integrity Level option, the
database server determines which algorithm is used based on how
it is configured.

Default: MD5, SHA1, SHA256, SHA384, SHA512

Data Integrity Types on page 206

If you finished configuring your driver, proceed to Step 6 on page 79 in "Data Source Configuration through a
GUI (Windows)." Optionally, you can further configure your driver by clicking on the following tabs.The following
sections provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Security tab allows you to specify security data source settings.

• Performance tab allows you to specify performance data source settings.

• Failover tab allows you to specify failover data source settings.

• Pooling tab allows you to specify connection pooling settings.

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

• Client Monitoring tab allows you to specify additional data source settings.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2110

Chapter 5: Using the Driver

See also
Oracle Advanced Security on page 141
Data Source Configuration on Windows on page 75

Proxy Tab
The Proxy tab allows you to specify settings for connecting through an HTTP proxy. On this tab, provide values
for the options in the following table; then, click Apply. The fields are optional unless otherwise noted.

Figure 13: Proxy tab

111Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

DescriptionConnection Options: Advanced
Security

Determines whether the driver connects to an endpoint through an
HTTP proxy server.

If set to 0 - NONE, the driver connects directly to the endpoint
specified by the Host Name connection option.

If set to 1 - HTTP, the driver connects to the endpoint through the
HTTP proxy server specified by the ProxyHost connection option.

Default: 0 - None

Proxy Mode on page 238

Specifies the Hostname and possibly the Domain of the Proxy
Server. The value specified can be a host name, a fully qualified
domain name, or an IPv4 or IPv6 address.

Default: Empty string

Proxy Host on page 237

Specifies the port number where the Proxy Server is listening for
HTTP requests.

Default: 0

Proxy Port on page 240

Specifies the user name needed to connect to the Proxy Server.

Default: Empty string

Proxy User on page 241

Specifies the password needed to connect to the Proxy Server.

Default: Empty string

Proxy Password on page 239

If you finished configuring your driver, proceed to Step 6 on page 79 in "Data Source Configuration through a
GUI (Windows)." Optionally, you can further configure your driver by clicking on the following tabs.The following
sections provide details on the fields specific to each configuration tab:

• General tab allows you to configure options that are required for creating a data source.

• Advanced tab allows you to configure advanced behavior.

• Security tab allows you to specify security data source settings.

• Performance tab allows you to specify performance data source settings.

• Failover tab allows you to specify failover data source settings.

• Pooling tab allows you to specify connection pooling settings.

• Bulk tab allows you to specify data source settings for DataDirect Bulk Load.

• Client Monitoring tab allows you to specify additional data source settings.

• Advanced Security tab allows you to specify settings for Oracle Advanced Security (OAS).

See also
Connecting through a proxy server on page 119
Data Source Configuration on Windows on page 75

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2112

Chapter 5: Using the Driver

Using a Connection String

If you want to use a connection string for connecting to a database, or if your application requires it, you must
specify either a DSN (data source name), a File DSN, or a DSN-less connection in the string. The difference
is whether you use the DSN=, FILEDSN=, or the DRIVER= keyword in the connection string, as described in
the ODBC specification. A DSN or FILEDSN connection string tells the driver where to find the default connection
information. Optionally, you may specify attribute=value pairs in the connection string to override the
default values stored in the data source.

The DSN connection string has the form:

DSN=data_source_name[;attribute=value[;attribute=value]...]

The FILEDSN connection string has the form:

FILEDSN=filename.dsn[;attribute=value[;attribute=value]...]

The logon dialog is not currently supported on macOS platforms. For connection strings using a DSN or File
DSN, this means that all required connection information must be provided in the data source and/or connection
string.

The DSN-less connection string specifies a driver instead of a data source. All connection information must
be entered in the connection string because the information is not stored in a data source.

The DSN-less connection string has the form:

DRIVER=[{]driver_name[}][;attribute=value[;attribute=value]...]

The "Connection Option Descriptions" section lists the long and short names for each attribute, as well as the
initial default value when the driver is first installed.You can specify either long or short names in the connection
string.

An example of a DSN connection string with overriding attribute values for Oracle Wire Protocol is:

DSN=Accounting;ID=JOHN;PWD=XYZZY

A FILEDSN connection string is similar except for the initial keyword:

FILEDSN=OracleWP.dsn;ID=JOHN;PWD=XYZZY

A DSN-less connection string must provide all necessary connection information:

DRIVER=DataDirect 8.0 Oracle Wire Protocol;HOST=server1;PORT=1522;
UID=JOHN;PWD=XYZZY;SERVICENAME=SALES.US.ACME.COM

See also
Connection Option Descriptions on page 175

Using a Logon Dialog Box

Note: The logon dialog box is not currently supported on macOS platforms. When connecting on macOS
platforms, all required information must be provided by the connection string or DSN.

113Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Configuring and Connecting to Data Sources

Some ODBC applications display a logon dialog box when you are connecting to a data source. In these cases,
the data source name has already been specified.

Figure 14: Logon to Oracle Wire Protocol dialog box

In this dialog box, provide the following information:

Note: For TNSNames connections, skip to Step 4 on page 115.

1. In the Host field, type either the name or the IP address of the server to which you want to connect. Note:

Note:

• The IP address can be specified in either IPv4 or IPv6 format, or a combination of the two. See "Using
IP Addresses" for details concerning these formats.

• If you enter a value for this field, the Server Name field is not available.

• If you enter a value for the LDAP Distinguished Name field, this field specifies name or address of the
LDAP directory server.

• This field is not available if you enter a value for the Server Name field.

2. In the Port Number field, type the number of your Oracle listener. Check with your database administrator
for the correct number.

Note:

• If you enter a value for this field, the Server Name field is not available.

• If you enter a value for the LDAP Distinguished Name field, this field specifies the port number listener
of the LDAP directory server.

• This field is not available if you enter a value for the Server Name field.

3. Provide a value for one of the following options:

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2114

Chapter 5: Using the Driver

• In the SID field, type the Oracle System Identifier that refers to the instance of Oracle running on the
server.

• In the Service Name field, type the Oracle service name that specifies the database used for the
connection. See "Service Name" in "Connection Option Descriptions" for details.

• In the LDAP Distinguished Name field, type the fully qualified path of names in the LDAP directory
information tree for the entry containing your connection information.

Skip to Step 6 on page 115

4. In the Server Name field, type a net service name that exists in the TNSNAMES.ORA file.The corresponding
entry in the TNSNAMES.ORA file is used to obtain Host, Port Number, and SID information.

Note:

• If you enter a value for this field, the Host, Port Number, SID, and Service Name fields are not available.

• If you enter a value for either the Host, Port Number, SID, or Service Name fields, this field is not available.

5. If you are using an Oracle Wallet Password Store (AuthenticationMethod=14), in the Oracle Wallet
field, type your the password used to access the Oracle Wallet in which your database credential information
is stored. Skip to Step 8 on page 115

6. If required, type your Oracle user name.

7. If required, type your Oracle password.

8. Optionally, in the Impersonate User field, type the proxy user ID used for impersonation.This value determines
your identity and permissions when executing queries. Note that the administrator must grant permission
to the authenticated user to impersonate the specified proxy user ID.

9. Click OK to log on to the Oracle database installed on the server you specified and to update the values in
the Registry.

Note: You can also use OS Authentication to connect to an Oracle database. See "OS Authentication" for
details.

See also
Connection Option Descriptions on page 175
Using IP Addresses on page 52
OS Authentication on page 53

Performance Considerations
The following connection options can enhance driver performance.You can also enhance performance through
efficient application design. See "Designing ODBC Applications for Performance Optimization" for details.

Application Using Threads (ApplicationUsingThreads): The driver coordinates concurrent database
operations (operations from different threads) by acquiring locks. Although locking prevents errors in the driver,
it also decreases performance. If your application does not make ODBC calls from different threads, the driver
has no reason to coordinate operations. In this case, the ApplicationUsingThreads attribute should be disabled
(set to 0).

115Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Performance Considerations

Note: If you are using a multi-threaded application, you must enable the Application Using Threads option.

Array Size (ArraySize): If this connection string attribute is set appropriately, the driver can improve performance
of your application by reducing the number of round trips on the network. For example, if your application
normally retrieves 200 rows, it is more efficient for the driver to retrieve 200 rows at one time over the network
than to retrieve 50 rows at a time during four round trips over the network.

Cached Cursor Limit (CachedCursorLimit): To improve performance when your application executes
concurrent Select statements, Cursor Identifiers can be cached. In this case, the Cursor Identifier is retrieved
from a cache rather than being created for each connection. When an Identifier is needed, the driver takes one
from its cache, if one is available, rather than creating a new one. Cached Cursor Identifiers are closed when
the connection is closed. To cache Cursor Identifiers, the CachedCursorLimit attribute must be set to the
appropriate number of concurrent open Select statements.

Cached Description Limit (CachedDescLimit): The driver can cache descriptions of Select statements and
improve the performance of your ODBC application; therefore, if your application issues a fixed set of SQL
queries throughout the life of the application, the description of the query should be cached. If a description is
not cached, the description must be retrieved from the server, which reduces performance. The descriptions
include the number of columns and the data type, length, and scale for each column. The matching is done by
an exact-text match through the From clause. If the statement contains a Union or a subquery, the driver cannot
cache the description.

Catalog Functions Include Synonyms (CatalogIncludesSynonyms): Standard ODBC behavior is to include
synonyms in the result set of calls to the following catalog functions: SQLProcedures, SQLStatistics and
SQLProcedureColumns. Retrieving this synonym information degrades performance. If your ODBC application
does not need to return synonyms when using these catalog functions, the driver can improve performance if
the CatalogIncludesSynonyms attribute is disabled (set to 0).

Catalog Options (CatalogOptions): If your application does not need to access the comments/remarks for
database tables, performance of your application can be improved. In this case, the CatalogOptions attribute
should be disabled (set to 0) because retrieving comments/remarks degrades performance. If this attribute is
enabled (set to 1), result column REMARKS (for the catalog functions SQLTables and SQLColumns) and the
result column COLUMN_DEF (for the catalog function SQLColumns) return actual values.

Client Information: The client information feature automatically adjusts server resources, such as CPU and
memory, based on the service class associated with a workload. Therefore, an application’s performance is
tied to the workload to which it is assigned and, ultimately, to the service class associated with that workload.
The Oracle Wire Protocol driver allows your application to set client information in the Oracle database that
can be used by the client information feature to classify work. If you know that your database environment can
use client information, coordinate with your database administrator to determine how setting the following
options affects performance.

• Accounting Info (AccountingInfo): Sets the CLIENT_INFO value of the V$SESSION table on the server.

• Action (Action): Sets ACTION column of the V$SESSION table on the server.

• Application Name (ApplicationName): Sets the dbms_session value in the database and the PROGRAM
value of the V$SESSION table on the server.

• Client Host Name (ClientHostName): Sets the MACHINE value in the V$SESSION table on the server.

• Client ID (ClientID): Sets the CLIENT_IDENTIFIER value in the V$SESSION table on the server.

• Client User (ClientUser): Sets the OSUSER value in the V$SESSION table on the server.

• Module (Module): Sets the CLIENT_IDENTIFIER value in the V$SESSION table on the server.

• Program ID (ProgramID): Sets the PROCESS value in the V$SESSION table on the server.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2116

Chapter 5: Using the Driver

Connection Pooling (Pooling): On Windows, UNIX, or Linux, if you enable the driver to use connection
pooling, you can set additional options that affect performance:

• Load Balance Timeout (LoadBalanceTimeout):You can define how long to keep connections in the pool.
The time that a connection was last used is compared to the current time and, if the timespan exceeds the
value of the Load Balance Timeout option, the connection is destroyed.The Min Pool Size option can cause
some connections to ignore this value.

• Connection Reset (ConnectionReset): Resetting a re-used connection to the initial configuration settings
impacts performance negatively because the connection must issue additional commands to the server.

• Max Pool Size (MaxPoolSize): Setting the maximum number of connections that the pool can contain too
low might cause delays while waiting for a connection to become available. Setting the number too high
wastes resources.

• Min Pool Size (MinPoolSize): A connection pool is created when the first connection with a unique
connection string connects to the database.The pool is populated with connections up to the minimum pool
size, if one has been specified. The connection pool retains this number of connections, even when some
connections exceed their Load Balance Timeout value.

Data Integrity Level (DataIntegrityLevel) and Data Integrity Types (DataIntegrityTypes): Checking data
integrity may adversely reduce performance because of the additional overhead (mainly CPU usage) that is
required to perform the check.

Default Buffer Size for Long/LOB Columns (DefaultLongDataBuffLen): To improve performance when
your application fetches images, pictures, or long text or binary data, a buffer size can be set to accommodate
the maximum size of the data. The buffer size should only be large enough to accommodate the maximum
amount of data retrieved; otherwise, performance is reduced by transferring large amounts of data into an
oversized buffer. If your application retrieves more than 1 MB of data, the buffer size should be increased
accordingly.

Describe At Prepare (DescribeAtPrepare): When enabled, this option requires extra network traffic. If your
application does not require result set information at prepare time (for instance, you request information about
the result set using SQLColAttribute(s), SQLDescribeCol, SQLNumResultCols, and so forth, before calling
SQLExecute on a prepared statement), you can increase performance by disabling this option.

Enable Bulk Load (EnableBulkLoad): If your application performs bulk loading of data, you can improve
performance by configuring the driver to use the database system's bulk load functionality instead of database
array binding. The trade-off to consider for improved performance is that using the bulk load functionality can
bypass data integrity constraints.

EnableServerResultCache (EnableServerResultCache): If your application connects to Oracle 11g and
executes the same query multiple times, you can improve performance by using the Oracle feature server-side
resultset caching. When enabled, Oracle stores the result set in database memory. On subsequent executions
of the same query, the result set is returned from database memory if the underlying tables have not been
modified. Without result set caching, the server would process the query and formulate a new result set.

Enable Scrollable Cursors (EnableScrollableCursors) and Enable Static Cursors for Long Data
(EnableStaticCursorsForLongData): When your application uses Static or Keyset (Scrollable) cursors, the
EnableScrollableCursors attribute must be enabled (set to 1). Also, if your application retrieves images, pictures,
long text or binary data while using Static cursors, the EnableStaticCursorsForLongData attribute must be
enabled (set to 1). However, this can degrade performance when retrieving long data with Static cursors as
the entire result set is stored on the client. To improve performance, you might consider designing your
application to retrieve long data through forward-only cursors.

Encryption Method (EncryptionMethod), Encryption Level (EncryptionLevel), and Encryption Types
(EncryptionTypes): Data encryption may adversely affect performance because of the additional overhead
(mainly CPU usage) required to encrypt and decrypt data. Using data encryption can degrade performance
more than performing data integrity checks.

117Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Performance Considerations

Failover Mode (FailoverMode): Although high availability that replays queries after a failure provides increased
levels of protection, it can adversely affect performance because of increased overhead.

LOB Prefetch Size (LOBPrefetchSize):You can improve performance when fetching LOBs by enabling the
LOB Prefetch Size option (set to value equal to or greater than 0). With LOB prefetching enabled, the driver
can return LOB meta-data and the beginning of LOB data along with the LOB locator during a fetch operation,
therefore reducing the number of round trips and improving performance. For significant gains, specify a value
that is large enough to entirely prefetch LOB values. This allows data to be available without having to go
through LOB protocol, which can be expensive.

Lock Timeout (LockTimeOut): Sometimes users attempt to select data that is locked by another user. Oracle
provides three options when accessing locked data with SELECT … FOR UPDATE statements:

• Wait indefinitely for the lock to be released (-1)

• Return an error immediately (0)

• Return an error if the lock has not been released within a specific number of seconds (n seconds)

Some applications may benefit by not waiting indefinitely and continuing execution; this keeps the application
from hanging. The application, however, needs to handle lock timeouts properly with an appropriate timeout
value; otherwise, processing time could be wasted handling lock timeouts, and deadlocks could go undetected.

To improve performance, either enter a number of seconds or enter 0 as the value for this option.

Procedure Returns Results (ProcedureRetResults): The driver can be tuned for improved performance if
your application's stored procedures do not return results. In this case, the ProcedureRetResults attribute
should be disabled (set to 0).

SDU Size (SDUSize): Set this option based on the size of result sets returned by your application. If your
application returns large result sets, set this option to the maximum SDU size configured on the database
server.This reduces the total number of packets required to return data to the client, thus improving performance.
If your application returns small result sets, set this option to a size smaller than the maximum to avoid burdening
your network with unnecessarily large packets.

Server Process Type (ServerType): When using a dedicated server connection, a server process on UNIX
(a thread on Windows) is created to serve only your application connection. When you disconnect, the process
goes away.The socket connection is made directly between your application and this dedicated server process.
This can provide tremendous performance improvements, but will use significantly more resources on UNIX
servers. Because this is a thread on Oracle servers running on Windows platforms, the additional resource
usage on the server is significantly less. This option should be set to 2 (dedicated) when you have a batch
environment with lower numbers of connections, your Oracle server has excess processing capacity and
memory available when at maximum load, or if you have a performance-sensitive application that would be
degraded by sharing Oracle resources with other applications.

Use Current Schema for Catalog Functions (UseCurrentSchema): If your application needs to access
database objects owned only by the current user, then performance can be improved. In this case, the Use
Current Schema for Catalog Functions option must be enabled. When this option is enabled, the driver returns
only database objects owned by the current user when executing catalog functions. Calls to catalog functions
are optimized by grouping queries. Enabling this option is equivalent to passing the Logon ID used on the
connection as the SchemaName argument to the catalog functions.

See also
Designing ODBC Applications for Performance Optimization on page 295

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2118

Chapter 5: Using the Driver

Using LDAP

Supported on Windows, UNIX, and Linux only.

LDAP (Lightweight Directory Access Protocol) is a directory information service that allows you to centrally
store information and share it across an IP network. In an LDAP service, information is stored in objects called
entries, which can contain a variety of data—including connection information. LDAP entries are often used to
store connection information because data storage is centralized, thereby simplifying maintenance when
changes occur. The driver supports retrieving basic connection information from an LDAP entry, including:

• Oracle server name and portOracle System Identifier (SID) or Oracle service name

• Server process type (shared or dedicated)

• Failover instructions

• Client load balancing instructions

• SSL encryption instructions

To use the driver with LDAP, configure the following connection options:

• LDAP Distinguished Name (LDAPDistinguishedName): Specify the fully qualified path of names in the LDAP
directory information tree for the entry containing your connection information. For example:

cn=DB122,cn=OracleContext,dc=america,dc=yourcompany,dc=com

• Host (HostName): Specify the name or IP address of the LDAP directory server.

• Port Number (PortNumber): Specify the port number listener of the LDAP directory server.

When attempting to connect, the driver retrieves connection information from the orclNetDescString attribute
in the LDAP entry specified by the LDAP Distinguished Name option. The following is an example of an
orclNetDescString value:

(DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP) (HOST = host_name)(PORT
=1521))) (CONNECT_DATA = (SID = ORCL)))

See also
LDAP Distinguished Name on page 228
Host on page 222
Port Number on page 237

Connecting through a proxy server

Supported on Windows, UNIX, and Linux only.

119Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using LDAP

In some environments, your application may need to connect through an HTTP proxy, for example, if your
application uses a web server or gateway system to access server clusters.

Note: Oracle Connection Manager is not currently supported using the procedure described in this section.
See "Oracle Connection Manager" for more information.

To connect to a server through an HTTP proxy:

• Set the service name or SID:

• Set the Service Name (ServiceName) option to specify the Oracle service name that specifies the
database used for the connection. The service name is a string that is the global database name—a
name that is comprised of the database name and domain name, for example: sales.us.acme.com.

• Set the SID (SID) option to specify the Oracle System Identifier that refers to the instance of Oracle
running on the server.

• Set the Host (HostName) option to specify the name or the IP address of the database server to which you
want to connect.

• Set the Port Number (PortNumber) option to specify the port number of the database server listener.

• Set the proxy server specific options:

• Set the Proxy Mode (ProxyMode) option to 1 (HTTP).

• Set the Proxy Host (ProxyHost) option to specify the Hostname and, if required by your environment,
the Domain, of the proxy server. The value specified can be a host name, a fully qualified domain name,
or an IPv4 or IPv6 address.

• Set the Proxy Port (ProxyPort) option to specify the port number where the proxy server is listening
for HTTP requests. The default is 0.

• Optionally, set the Proxy User (ProxyUser) option to specify the user name used to connect to the
Proxy Server.

• Optionally, set Proxy Password (ProxyPassword) to specified the password needed to connect to the
proxy server.

The following examples demonstrate a basic connection to a proxy server.

Using a connection string:

DRIVER=DataDirect 8.0 Oracle Wire Protocol;HostName=123.210.123.210;
PortNumber=5439;ProxyHost=123.255.78.90;ProxyMode=1;ProxyPort=1521;
ServiceName=sales.us.example.com;ProxyUser=jqpublic;ProxyPassword=secret;

Using the odbc.ini file with a 32-bit driver:

Driver=ODBCHOME/lib/ivoraxx.so
Description=DataDirect Oracle Wire Protocol driver
HostName=123.210.123.210
PortNumber=5439
ProxyHost=123.255.78.90
ProxyMode=1
ProxyPassword=secret
ProxyPort=1521
ProxyUser=jqpublic
ServiceName=sales.us.acme.com

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2120

Chapter 5: Using the Driver

See also
Service Name on page 251
SID on page 252
Host on page 222
Port Number on page 237
Proxy Mode on page 238
Proxy Host on page 237
Proxy Port on page 240
Proxy User on page 241
Proxy Password on page 239

Oracle Connection Manager

Supported on Windows, UNIX, and Linux only.

Oracle Connection Manager is a network solution that serves as a proxy to Oracle database servers and
clusters. In addition to being a single point of access, Oracle Connection Manager offers a number of network
solutions, including increased scalability, simplified access control, and improved availability.The driver supports
Oracle Connection Manager for connections that are defined using the TNSNAMES.ORA file.

To connect to Oracle Connection Manager:

• In the TNSNAMES.ORA file:

• Define the net service name entry for your Oracle Connection Manager service. When using Oracle
Connection Manager, the definition must contain the keyword-value pair SOURCE_ROUTE=YES. Refer
to the documentation for your Oracle database for details and the latest information.

Note: Oracle net service name definitions support the SOURCE_ROUTE keyword at the
DESCRIPTION_LIST, DESCRIPTION, and ADDRESS_LIST levels. Currently, the driver supports defining
SOURCE_ROUTE at the DESCRIPTION and ADDRESS_LIST levels, but not at the DESCRIPTION_LIST
level.

• For the driver:

• Set the TNSNames File (TNSNamesFile) to specify the name(s) and location(s) of the TNSNAMES.ORA
file(s) that contains the net service name definition for your Oracle Connection Manager service.

• Set the Server Name (ServerName) option to specify the net service name for the Oracle Connection
Manger service defined in the TNSNAMES.ORA file. The corresponding net service name entry in the
TNSNAMES.ORA file is used to obtain connection information.

The following examples demonstrate a basic connection through Oracle Connection Manager.

Using a connection string:

DRIVER=DataDirect 8.0 Oracle Wire Protocol;
ServerName=MyNetServiceName;TNSNamesFile=F:/server2/oracle/tnsnames.ora;

121Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Connecting through a proxy server

Using the odbc.ini file with a 32-bit driver:

Driver=ODBCHOME/lib/ivoraxx.so
Description=DataDirect Oracle Wire Protocol driver
ServerName=MyNetServiceName
TNSNamesFile=F:/server2/oracle/tnsnames.ora

See also
Server Name on page 249
TNSNames File on page 256

Unexpected Characters
Users are sometimes surprised when they insert a character into a database, only to have a different character
displayed when they fetch it from the database. There are many reasons this can happen, but it most often
involves code page issues, not driver errors.

Client and server machines in a database system each use code pages, which can be identified by a name or
a number, such as Shift_JIS (Japanese) or cp1252 (Windows English). A code page is a mapping that associates
a sequence of bits, called a code point, with a specific character. Code pages include the characters and
symbols of one or more languages. Regardless of geographical location, a machine can be configured to use
a specific code page. Most of the time, a client and database server would use similar, if not identical, code
pages. For example, a client and server might use two different Japanese code pages, such as Shift_JIS and
EUC_JP, but they would still share many Japanese characters in common. These characters might, however,
be represented by different code points in each code page. This introduces the need to convert between code
pages to maintain data integrity. In some cases, no one-to-one character correspondence exists between the
two code points. This causes a substitution character to be used, which can result in displaying an unexpected
character on a fetch.

When the driver on the client machine opens a connection with the database server, the driver determines the
code pages being used on the client and the server. This is determined from the Active Code Page on a
Windows-based machine. If the client machine is UNIX-based (UNIX/Linux/macOS), the driver checks the
IANAAppCodePage option. If it does not find a specific setting for IACP, it defaults to a value of ISO_8859_1.

If the client and server code pages are compatible, the driver transmits data in the code page of the server.
Even though the pages are compatible, a one-to-one correspondence for every character may not exist. If the
client and server code pages are completely dissimilar, for example, Russian and Japanese, then many
substitutions occur because very few, if any, of the characters are mapped between the two code pages.

The following is a specific example of an unexpected character:

• The Windows client machine is running code page cp1252.

• The Oracle server is running code page ISO-8859-P1.

• When you insert a Euro character (€) from the Windows client and then fetch it back, an upside down
question mark (¿) is displayed on the client instead of the Euro symbol.

This substitution occurs because the Euro character does not exist within the characters defined by the
ISO-8859-P1 character set on the Oracle server. The Oracle server records the code point for its substitution
character in the table instead of the code point for the Euro. This code point is an upside down question mark
in the Windows cp1252 code page.

This is not a driver error. The code page of the Oracle database could not recognize the Euro code point and
used its substitution character in the table.The best way to avoid these problems is to use the same code page
on both the client and server machines.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2122

Chapter 5: Using the Driver

You can check the native code point stored in the Oracle database using SQL*Plus with a SQL statement
similar to the following:

SELECT dump(columnname, 1016) FROM yourtable;

Check the returned hexadecimal values to verify whether the data you intended to reside in the table is there.
If it appears that Oracle substituted a different code point, then check the Oracle database code page to see
if your intended character exists. If your character does not exist in the code page, then no error is involved;
Oracle simply does not recognize the original character, and uses its substitution character instead.

Using Failover
To ensure continuous, uninterrupted access to data, the your Progress DataDirect for ODBC driver provides the
following levels of failover protection, listed from basic to more comprehensive:

• Connection failover provides failover protection for new connections only. The driver fails over new
connections to an alternate, or backup, database server if the primary database server is unavailable, for
example, because of a hardware failure or traffic overload. If a connection to the database is lost, or dropped,
the driver does not fail over the connection. This failover method is the default.

• Extended connection failover provides failover protection for new connections and lost database connections.
If a connection to the database is lost, the driver fails over the connection to an alternate server, preserving
the state of the connection at the time it was lost, but not any work in progress.

• Select Connection failover provides failover protection for new connections and lost database connections.
In addition, it provides protection for Select statements that have work in progress. If a connection to the
database is lost, the driver fails over the connection to an alternate server, preserving the state of the
connection at the time it was lost and preserving the state of any work being performed by Select statements.

The method you choose depends on how failure tolerant your application is. For example, if a communication
failure occurs while processing, can your application handle the recovery of transactions and restart them?
Your application needs the ability to recover and restart transactions when using either extended connection
failover mode or select connection failover mode. The advantage of select mode is that it preserves the state
of any work that was being performed by the Select statement at the time of connection loss. If your application
had been iterating through results at the time of the failure, when the connection is reestablished the driver
can reposition on the same row where it stopped so that the application does not have to undo all of its previous
result processing. For example, if your application were paging through a list of items on a Web page when a
failover occurred, the next page operation would be seamless instead of starting from the beginning.
Performance, however, is a factor in selecting a failover mode. Select mode incurs additional overhead when
tracking what rows the application has already processed.

You can specify which failover method you want to use by setting the "Failover Mode" connection option. Read
the following sections for details on each failover method:

• Connection Failover

• Extended Connection Failover

• Select Connection Failover

Regardless of the failover method you choose, you must configure one or multiple alternate servers using the
Alternate Servers connection option. See "Guidelines for Primary and Alternate Servers" for information about
primary and alternate servers.

See also
Failover Mode on page 219

123Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Failover

Connection Failover on page 124
Extended Connection Failover on page 125
Select Connection Failover on page 126
Alternate Servers on page 186
Guidelines for Primary and Alternate Servers on page 127

Connection Failover

Connection failover allows an application to connect to an alternate, or backup, database server if the primary
database server is unavailable, for example, because of a hardware failure or traffic overload. Connection
failover provides failover protection for new connections only and does not provide protection for lost connections
to the database, nor does it preserve states for transactions or queries.

You can customize the driver for connection failover by configuring a list of alternate database servers that are
tried if the primary server is not accepting connections. Connection attempts continue until a connection is
successfully established or until all the alternate database servers have been tried the specified number of
times.

For example, suppose you have the environment shown in the following illustration with multiple database
servers: Database Server A, B, and C. Database Server A is designated as the primary database server,
Database Server B is the first alternate server, and Database Server C is the second alternate server.

First, the application attempts to connect to the primary database server, Database Server A (1). If connection
failover is enabled and Database Server A fails to accept the connection, the application attempts to connect
to Database Server B (2). If that connection attempt also fails, the application attempts to connect to Database
Server C (3).

In this scenario, it is probable that at least one connection attempt would succeed, but if no connection attempt
succeeds, the driver can retry each alternate database server (primary and alternate) for a specified number
of attempts.You can specify the number of attempts that are made through the connection retry feature.You
can also specify the number of seconds of delay, if any, between attempts through the connection delay feature.
See "Using Connection Retry" for more information about connection retry.

A driver fails over to the next alternate database server only if a successful connection cannot be established
with the current alternate server. If the driver successfully establishes communication with a database server
and the connection request is rejected by the database server because, for example, the login information is
invalid, then the driver generates an error and does not try to connect to the next database server in the list.
It is assumed that each alternate server is a mirror of the primary and that all authentication parameters and
other related information are the same.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2124

Chapter 5: Using the Driver

For details on configuring connection failover for your driver, see "Configuring Failover-Related Options."

See also
Using Connection Retry on page 128
Configuring Failover-Related Options on page 128

Extended Connection Failover

Extended connection failover provides failover protection for the following types of connections:

• New connections, in the same way as described in "Connection Failover"

• Lost connections

When a connection to the database is lost, the driver fails over the connection to an alternate server, restoring
the same state of the connection at the time it was lost. For example, when reestablishing a lost connection
on the alternate database server, the driver performs the following actions:

• Restores the connection using the same connection options specified by the lost connection

• Reallocates statement handles and attributes

• Logs in the user to the database with the same user credentials

• Restores any prepared statements associated with the connection and repopulates the statement pool

• Restores manual commit mode if the connection was in manual commit mode at the time of the failover

The driver does not preserve work in progress. For example, if the database server experienced a hardware
failure while processing a query, partial rows processed by the database and returned to the client would be
lost. If the driver was in manual commit mode and one or more Inserts or Updates were performed in the current
transaction before the failover occurred, then the transaction on the primary server is rolled back. The Inserts
or Updates done before the failover are not committed to the primary server.Your application needs to rerun
the transaction after the failover because the Inserts or Updates done before the failover are not repeated by
the driver on the failover connection.

When a failover occurs, if a statement is in allocated or prepared state, the next operation on the statement
returns a SQL state of 01000 and a vendor code of 0. If a statement is in an executed or prepared state, the
next operation returns a SQL state of 40001 and a vendor code of 0. Either condition returns an error message
similar to:

Your connection has been terminated. However, you have been successfully connected to
the next available AlternateServer: 'HOSTNAME=Server4:PORTNUMBER= 1521:SERVICENAME=test'.
All active transactions have been rolled back.

The driver retains all connection settings made through ODBC API calls when a failover connection is made.
It does not, however, retain any session settings established through SQL statements.This can be done through
the Initialization String connection option, described in the individual driver chapters.

The driver retains the contents of parameter buffers, which can be important when failing over after a fetch.
All Select statements are re-prepared at the time the failover connection is made. All other statements are
placed in an allocated state.

If an error occurs while the driver is reestablishing a lost connection, the driver can fail the entire failover process
or proceed with the process as far as it can. For example, suppose an error occurred while reestablishing the
connection because a table for which the driver had a prepared statement did not exist on the alternate
connection. In this case, you may want the driver to notify your application of the error and proceed with the
failover process.You can choose how you want the driver to behave if errors occur during failover by setting
the Failover Granularity connection option.

125Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Failover

During the failover process, your application may experience a short pause while the driver establishes a
connection on an alternate server. If your application is time-sensitive (a real-time customer order application,
for example) and cannot absorb this wait, you can set the "Failover Preconnect" connection option to true.
Setting the Failover Preconnect option to true instructs the driver to establish connections to the primary server
and an alternate server at the same time.Your application uses the first connection that is successfully
established. If this connection to the database is lost at a later time, the driver saves time in reestablishing the
connection on the server to which it fails over because it can use the spare connection in its failover process.

This pre-established failover connection is not used by the driver until the driver determines that it needs to fail
over. If the server to which the driver is connected or the network equipment through which the connection is
routed is configured with a timeout, the pre-configured failover connection could time out. The pre-configured
failover connection can also be lost if the failover server is brought down and back up again. The driver tries
to establish the connection to the failover server again if the connection is lost.

See also
Connection Failover on page 124
Failover Granularity on page 218
Failover Preconnect on page 220

Select Connection Failover

Select connection failover provides failover protection for the following types of connections:

• New connections, in the same way as described in "Connection Failover"

• Lost connections, in the same way as described in "Extended Connection Failover"

In addition, the driver can recover work in progress because it keeps track of the last Select statement the
application executed on each Statement handle, including how many rows were fetched to the client. For
example, if the database had only processed 500 of 1,000 rows requested by a Select statement when the
connection was lost, the driver would reestablish the connection to an alternate server, re-execute the Select
statement, and position the cursor on the next row so that the driver can continue fetching the balance of rows
as if nothing had happened.

Performance, however, is a factor when considering whether to use Select mode. Select mode incurs additional
overhead when tracking what rows the application has already processed.

The driver only recovers work requested by Select statements.You must explicitly restart the following types
of statements after a failover occurs:

• Insert, Update, or Delete statements

• Statements that modify the connection state, for example, SET or ALTER SESSION statements

• Objects stored in a temporary tablespace or global temporary table

• Partially executed stored procedures and batch statements

When in manual transaction mode, no statements are rerun if any of the operations in the transaction were
Insert, Update, or Delete. This is true even if the statement in process at the time of failover was a Select
statement.

By default, the driver verifies that the rows that are restored match the rows that were originally fetched and,
if they do not match, generates an error warning your application that the Select statement must be reissued.
By setting the Failover Granularity connection option, you can customize the driver to ignore this check altogether
or fail the entire failover process if the rows do not match.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2126

Chapter 5: Using the Driver

When the row comparison does not agree, the default behavior of Failover Granularity returns a SQL state of
40003 and an error message similar to:

Unable to position to the correct row after a successful failover attempt to
AlternateServer: 'HOSTNAME=Server4:PORTNUMBER= 1521:SERVICENAME=test'. You must reissue
 the select statement.

If you have configured Failover Granularity to fail the entire failover process, the driver returns a SQL state of
08S01 and an error message similar to:

Your connection has been terminated and attempts to complete the failover process to the
 following Alternate Servers have failed: AlternateServer: 'HOSTNAME=Server4:PORTNUMBER=
 1521:SERVICENAME=test'. All active transactions have been rolled back.

See also
Connection Failover on page 124
Extended Connection Failover on page 125

Guidelines for Primary and Alternate Servers

Oracle databases provide advanced database replication technologies through the Oracle Real Application
Clusters (RAC) feature. The failover functionality provided by the drivers does not require RAC, but can work
with this technology to provide comprehensive failover protection. To ensure that failover works correctly,
alternate servers should mirror data on the primary server or be part of a configuration where multiple database
nodes share the same physical data.

Using Client Load Balancing

Client load balancing helps distribute new connections in your environment so that no one server is overwhelmed
with connection requests. When client load balancing is enabled, the order in which primary and alternate
database servers are tried is random. For example, suppose that client load balancing is enabled as shown in
the following illustration:

127Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Failover

First, Database Server B is tried (1). Then, Database Server C may be tried (2), followed by a connection
attempt to Database Server A (3). In contrast, if client load balancing were not enabled in this scenario, each
database server would be tried in sequential order, primary server first, then each alternate server based on
its entry order in the alternate servers list.

Client load balancing is controlled by the Load Balancing connection option. For details on configuring client
load balancing, see the appropriate driver chapter in this book.

See also
Load Balancing on page 229

Using Connection Retry

Connection retry defines the number of times the driver attempts to connect to the primary server and, if
configured, alternate database servers after the initial unsuccessful connection attempt. It can be used with
connection failover, extended connection failover, and select failover. Connection retry can be an important
strategy for system recovery. For example, suppose you have a power failure in which both the client and the
server fails. When the power is restored and all computers are restarted, the client may be ready to attempt a
connection before the server has completed its startup routines. If connection retry is enabled, the client
application can continue to retry the connection until a connection is successfully accepted by the server.

Connection retry can be used in environments that have only one server or can be used as a complementary
feature with connection failover in environments with multiple servers.

Using the connection options Connection Retry Count and Connection Retry Delay, you can specify the number
of times the driver attempts to connect and the time in seconds between connection attempts. For details on
configuring connection retry, see "Configuring Failover-Related Options."

See also
Connection Retry Count on page 199
Connection Retry Delay on page 200
Configuring Failover-Related Options on page 128

Configuring Failover-Related Options

The following table summarizes how failover-related connection options work with the driver. See "Connection
Option Descriptions" for details about configuring the options.The step numbers in the table refer the procedure
that follows the table

Table 3: Summary: Failover and Related Connection Options

CharacteristicOption

One or multiple alternate database servers. An IP address or server name
identifying each server is required.

Default: None

Alternate Servers
(AlternateServers)

(See step 1 on page 130)

Number of times the driver retries the primary database server, and if specified,
alternate servers until a successful connection is established.

Default: 0

Connection Retry Count
(ConnectionRetryCount)

(See step 5 on page 131)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2128

Chapter 5: Using the Driver

CharacteristicOption

Wait interval, in seconds, between connection retry attempts when the Connection
Retry Count option is set to a positive integer.

Default: 3

Connection Retry Delay
(ConnectionRetryDelay)

(See step 6 on page 131)

Determines whether the driver fails the entire failover process or continues with
the process if errors occur while trying to reestablish a lost connection.

If set to 0 (Non-Atomic), the driver continues with the failover process and posts
any errors on the statement on which they occur.

If set to 1 (Atomic) the driver fails the entire failover process if an error is generated
as the result of anything other than executing and repositioning a Select statement.
If an error is generated as a result of repositioning a result set to the last row
position, the driver continues with the failover process, but generates a warning
that the Select statement must be reissued.

If set to 2 (Atomic Including Repositioning), the driver fails the entire failover
process if any error is generated as the result of restoring the state of the
connection or the state of work in progress.

If set to 3 (Disable Integrity Check), the driver does not verify that the rows that
were restored during the failover process match the original rows. This value
applies only when Failover Mode is set to 2 (Select).

Default: 0 (Non-Atomic)

Failover Granularity
(FailoverGranularity)

(See step 3 on page 130)

Specifies the type of failover method the driver uses.

If set to 0 (Connection), the driver provides failover protection for new connections
only.

If set to 1 (Extended Connection), the driver provides failover protection for new
and lost connections, but not any work in progress.

If set to 2 (Select), the driver provides failover protection for new and lost
connections. In addition, it preserves the state of work performed by the last Select
statement executed.

Default: 0 (Connection)

Failover Mode
(FailoverMode)

(See step 2 on page 130)

129Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Failover

CharacteristicOption

Specifies whether the driver tries to connect to the primary and an alternate server
at the same time.

If set to 0 (Disabled), the driver tries to connect to an alternate server only when
failover is caused by an unsuccessful connection attempt or a lost connection.
This value provides the best performance, but your application typically
experiences a short wait while the failover connection is attempted.

If set to 1 (Enabled), the driver tries to connect to the primary and an alternate
server at the same time. This can be useful if your application is time-sensitive
and cannot absorb the wait for the failover connection to succeed.

Default: 0 (Disabled)

Failover Preconnect
(FailoverPreconnect)

(See step 4 on page 130)

Determines whether the driver uses client load balancing in its attempts to connect
to the database servers (primary and alternate).You can specify one or multiple
alternate servers by setting the Alternate Servers option.

If set to 1 (Enabled), the driver uses client load balancing and attempts to connect
to the database servers (primary and alternate servers) in random order.

If set to 0 (Disabled), the driver does not use client load balancing and connects
to each server based on their sequential order (primary server first, then, alternate
servers in the order they are specified).

Default: 0 (Disabled)

Load Balancing
(LoadBalancing)

(See step 7 on page 131)

1. To configure connection failover, you must specify one or more alternate database servers that are tried
at connection time if the primary server is not accepting connections. To do this, use the Alternate Servers
connection option. Connection attempts continue until a connection is successfully established or until all
the database servers in the list have been tried once (the default).

2. Choose a failover method by setting the Failover Mode connection option.The default method is Connection
(FailoverMode=0).

3. If Failover Mode is Extended Connection (FailoverMode=1) or Select (FailoverMode=2), set the Failover
Granularity connection option to specify how you want the driver to behave if errors occur while trying to
reestablish a lost connection.The default behavior of the driver is Non-Atomic (FailoverGranularity=0),
which continues with the failover process and posts any errors on the statement on which they occur. Other
values are:

Atomic (FailoverGranularity=1): the driver fails the entire failover process if an error is generated as
the result of anything other than executing and repositioning a Select statement. If an error is generated as
a result of repositioning a result set to the last row position, the driver continues with the failover process,
but generates a warning that the Select statement must be reissued.

Atomic including Repositioning (FailoverGranularity=2): the driver fails the entire failover process if
any error is generated as the result of restoring the state of the connection or the state of work in progress.

Disable Integrity Check (FailoverGranularity=3): the driver does not verify that the rows restored
during the failover process match the original rows. This value applies only when Failover Mode is set to
Select (FailoverMode=2).

4. Optionally, enable the Failover Preconnect connection option (FailoverPreconnect=1) if you want the
driver to establish a connection with the primary and an alternate server at the same time.This value applies
only when Failover Mode is set to Extended Connection (FailoverMode=1) or Select (FailoverMode=2).
The default behavior is to connect to an alternate server only when failover is caused by an unsuccessful
connection attempt or a lost connection (FailoverPreconnect=0).

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2130

Chapter 5: Using the Driver

5. Optionally, specify the number of times the driver attempts to connect to the primary and alternate database
servers after the initial unsuccessful connection attempt. By default, the driver does not retry. To set this
feature, use the Connection Retry Count connection option.

6. Optionally, specify the wait interval, in seconds, between attempts to connect to the primary and alternate
database servers. The default interval is 3 seconds. To set this feature, use the Connection Retry Delay
connection option.

7. Optionally, specify whether the driver will use client load balancing in its attempts to connect to primary and
alternate database servers. If load balancing is enabled, the driver uses a random pattern instead of a
sequential pattern in its attempts to connect. The default value is not to use load balancing. To set this
feature, use the Load Balancing connection option.

See also
Connection Option Descriptions on page 175

A Connection String Example
The following connection string configures the driver to use connection failover in conjunction with some of its
optional features.

DSN=AcctOracleServer;AlternateServers=(HostName=AccountingOracleServer:PortNumber=1521:
SID=Accounting, HostName=255.201.11.24:PortNumber=1522:ServiceName=ABackup.NA.MyCompany);
ConnectionRetryCount=4;ConnectionRetryDelay=5;LoadBalancing=1;FailoverMode=0

Specifically, this connection string configures the driver to use two alternate servers as connection failover
servers, to attempt to connect four additional times if the initial attempt fails, to wait five seconds between
attempts, to try the primary and alternate servers in a random order, and to attempt reconnecting on new
connections only. The additional connection information required for the alternate servers is specified in the
data source AcctOracleServer.

An odbc.ini File Example
To configure the 32-bit driver to use connection failover in conjunction with some of its optional features in your
odbc.ini file, you could set the following connection string attributes:

Driver=ODBCHOME/lib/ivoraxx.so
Description=DataDirect Oracle Wire Protocol driver
...
AlternateServers=(HostName=AccountingOracleServer:PortNumber=1521:SID=Accounting,
HostName=255.201.11.24:PortNumber=1522:ServiceName=ABackup.NA.MyCompany)
...
ConnectionRetryCount=4
ConnectionRetryDelay=5
...
LoadBalancing=0
...
FailoverMode=1
...
FailoverPreconnect=1
...

Specifically, this odbc.ini configuration tells the driver to use two alternate servers as connection failover
servers, to attempt to connect four additional times if the initial attempt fails, to wait five seconds between
attempts, to try the primary and alternate servers in sequential order (do not use load balancing), to attempt
reconnecting on new and lost connections, and to establish a connection with the primary and alternate servers
at the same time.

131Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Failover

Using Client Information
Many databases allow applications to store client information associated with a connection. For example, the
following types of information can be useful for database administration and monitoring purposes:

• Name of the application currently using the connection.

• User ID for whom the application using the connection is performing work. The user ID may be different
than the user ID that was used to establish the connection.

• Host name of the client on which the application using the connection is running.

• Product name and version of the driver on the client.

• Additional information that may be used for accounting or troubleshooting purposes, such as an accounting
ID.

For Oracle 11g R2 and higher, this information is managed through the client information feature.

See "How Databases Store Client Information" for more information about how Oracle stores client information.

See also
How Databases Store Client Information on page 132

How Databases Store Client Information

Typically, databases that support storing client information do so by providing a register, a variable, or a column
in a system table in which the information is stored. If an application attempts to store information and the
database does not provide a mechanism for storing that information, the driver caches the information locally.
Similarly, if an application returns client information and the database does not provide a mechanism for storing
that information, the driver returns the locally cached value.

Storing Client Information

Your application can store client information associated with a connection.The following table shows the driver
connection options that your application can use to store client information and where that client information
is stored for each database. See "Connection Option Descriptions" for a description of each option.

Table 4: Database Locations for Storing Client Information

LocationDescriptionOption

CLIENT_INFO value in the V$SESSION
table.

Additional information that may be used for
accounting or troubleshooting purposes, such
as an accounting ID

Accounting Info
(AccountingInfo)

ACTION value in the V$SESSION table.The current action within the current module.Action (Action)

CLIENT_IDENTIFIER attribute. In addition,
this value is also stored in the PROGRAM
value in the V$SESSION table.

Name of the application currently using the
connection

Application Name
(ApplicationName)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2132

Chapter 5: Using the Driver

LocationDescriptionOption

MACHINE value in the V$SESSION table.Host name of the client on which the application
using the connection is running

Client Host Name
(ClientHostName)

CLIENT_IDENTIFIER value in the
V$SESSION table.

Additional information about the clientClient ID
(ClientID)

OSUSER value in the V$SESSION table.User ID for whom the application using the
connection is performing work

Client User
(ClientUser)

MODULE value in the V$SESSION table.The name of a stored procedure or the name
of the application

Module (Module)

PROCESS value in the V$SESSION table.Product name and version of the driver on the
client

Program ID
(ProgramID)

See also
Connection Option Descriptions on page 175

Using Security
The driver supports the following security features:

• Authentication is the process of identifying a user.

• Data encryption is the conversion of data into a form that cannot be easily understood by unauthorized
users.

For current information, refer to the security matrix on the Progress DataDirect Web site:

Progress DataDirect Security Support Matrix

Authentication

On most computer systems, a password is used to prove a user's identity. This password often is transmitted
over the network and can possibly be intercepted by malicious hackers. Because this password is the one
secret piece of information that identifies a user, anyone knowing a user's password can effectively be that
user. Authentication methods protect the identity of the user.

The driver supports the following authentication methods:

• User ID/password authentication authenticates the user to the database using a database user name and
password.

• Client authentication uses the user ID and password of the user logged onto the system on which the driver
is running to authenticate the user to the database. The database server relies on the client to authenticate
the user and does not provide additional authentication.

• Kerberos authentication is a trusted third-party authentication service that verifies user identities.The Oracle
Wire Protocol driver supports both Windows Active Directory Kerberos and MIT Kerberos implementations.

133Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Security

https://documentation.progress.com/output/DataDirect/securitymatrix/

• NTLM authentication authenticates clients to the database through a challenge-response authentication
mechanism that enables clients to prove their identities without sending a database password to the server.

Kerberos Requirements
If you are using Kerberos, verify that your environment meets the requirements listed in the following table
before you configure the driver for Kerberos authentication.

Table 5: Kerberos Authentication Requirements for the Oracle Wire Protocol Driver

RequirementsComponent

The database server must be administered by the same domain controller that administers
the client and must be running one of the following databases:

• Oracle 12c (R1 and R2)

• Oracle 11g (R1 and R2)

• Oracle 10g (R1 and R2)

• Oracle 9i (R2)

In addition, Oracle Advanced Security is required.

Database server

The Kerberos server is the machine where the user IDs for authentication are
administered. The Kerberos server is also the location of the Kerberos KDC. Network
authentication must be provided by one of the following methods:

• Windows Active Directory on one of the following operating systems:Windows Server
2003 or Windows 2000 Server Service Pack 3 or higher

• MIT Kerberos 1.4.2 or higher

Kerberos server

The client must be administered by the same domain controller that administers the
database server.

Client

Kerberos Authentication
Kerberos authentication can take advantage of the user name and password maintained by the operating
system to authenticate users to the database or use another set of user credentials specified by the application.

The Kerberos method requires knowledge of how to configure your Kerberos environment.This method supports
both Windows Active Directory Kerberos and MIT Kerberos environments.

To use Kerberos authentication, the application user first must obtain a Kerberos Ticket Granting Ticket (TGT)
from the Kerberos server. The Kerberos server verifies the identity of the user and controls access to services
using the credentials contained in the TGT.

If the application uses Kerberos authentication from a UNIX, Linux, macOS client, the user must explicitly obtain
a TGT. To obtain a TGT explicitly, the user must log onto the Kerberos server using the kinit command. For
example, the following command requests a TGT from the server with a lifetime of 10 hours, which is renewable
for 5 days:

kinit -l 10h -r 5d user

where user is the application user.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2134

Chapter 5: Using the Driver

Refer to your Kerberos documentation for more information about using the kinit command and obtaining TGTs
for users.

 If the application uses Kerberos authentication from a Windows client, the application user does not
explicitly need to obtain a TGT. Windows Active Directory automatically obtains a TGT for the user.

OS Authentication
On all supported platforms, Oracle has a feature called OS Authentication that allows you to connect to an
Oracle database via the operating system user name and password. To connect, use a forward slash (/) for
the user name and leave the password blank. To configure the Oracle server, refer to the Oracle server
documentation.This feature is valid when connecting from a data source, a connection string, or a logon dialog
box.

Oracle Internet Directory (OID)
Oracle Internet Directory (OID) is an LDAP-based directory service that is used for the storage, retrieval and
administration of collections of object information. Oracle Internet Directory is often used as a single sign-on
solution because of its ability to centrally store authentication information and permissions for Oracle databases.
The driver supports authenticating with Oracle Internet Directory without additional driver configuration.

Oracle Wallet SSL Authentication
The driver supports Oracle Wallet SSL authentication, which was introduced in Oracle 11.1.0.6. When Oracle
Wallet SSL Authentication is enabled, SSL certificates are authenticated against a list of trusted certificates
stored in the wallet. Refer to the documentation for your Oracle database for detailed information on the Oracle
Wallet feature.

To enable Oracle Wallet SSL authentication:

• Enable SSL (EncryptionMethod=1).

• Set the Authentication Method connection option:

• If a user ID or password is not required, set to 11 (SSL).

• If a user ID or password is required, set to 12 (SSL with UID & PWD).

• Set the Key Store option to specify the absolute path of the keystore file in your wallet that contains the SSL
certificate information.

• Optionally, if you are using a file in the PKCS#12 format, set the Key Store Password option to specify the
password if required by your environment.

• Set the Trust Store option to specify the absolute path of the truststore file in your wallet that contains the
SSL certificate information.

• Optionally, if you are using a file in the PKCS#12 format, set the Trust Store Password option to specify the
password if required by your environment.

• If a user ID and password is required (AuthenticationMethod=12), specify the corresponding value for
the User Name and Password options.

Note: When Oracle Wallet SSO is used as the Key Store or Trust Store, the Key Store Password and Trust
Store Password options are not required.

135Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Security

See also
Authentication Method on page 188
Encryption Method on page 216
Key Store on page 227
Key Store Password on page 228
Trust Store on page 257
Trust Store Password on page 258
User Name on page 259
Password on page 236

Oracle Wallet Password Store
Oracle Wallet Password Stores allow the driver to retrieve database credentials from an Oracle Wallet to be
used when authenticating to the server. Using Oracle Wallet Password Stores simplifies password management
by centrally storing database credential information, thereby providing a method to modify the user ID and
password without changing application code. In addition, by storing credentials in a wallet, security is improved
by eliminating the need include passwords in the application code or scripts.

When this feature is enabled, the driver retrieves the user ID and password for a database from the Oracle
Wallet file specified by the Credentials Wallet Path (CredentialsWalletPath) option. Since multiple sets of
database credentials can be stored in a wallet file, the driver retrieves only the user name and password
associated with the string specified by the CredentialsWalletEntry (CredentialsWalletEntry). After the user ID
and password are retrieved, the driver uses these credentials to authenticate to the server.

Entries for data base connection credentials in a wallet are created using the following syntax from a command
line:

mkstore -wrl <credentials_wallet_path> -createCredential <credentials_wallet_entry>
<userID> <password>

From these entries, you can determine the values for the Credentials Wallet Path and Credentials Wallet Entry
options when configuring the driver.

To enable authentication using a Oracle Wallet password store:

• Set the Authentication Method (AuthenticationMethod) option to 14 (Wallet UID & PWD).

• Set the Credentials Wallet Path (CredentialsWalletPath) option to specify the fully-qualified path to the
Oracle Wallet file in which your database credential information is stored.The driver supports ewallet.p12
and cwallet.sso files for wallets.

• Set the Credentials Wallet Entry (CredentialsWalletEntry) to specify the string value used to identify database
credential information stored in your Oracle Wallet. This value is defined when creating or modifying
credentials stored in a wallet and is typically a net service name, Oracle service name, or host:port:SID
string, but can be any value specified by the user. Credentials Wallet Entry provides a method to retrieve
the correct credentials when multiple user name and password pairs are stored in a wallet file.

• If you are using an ewallet.p12 file for your wallet, set the Wallet Password (CredentialsWalletPassword)
to specify the password used to access the Oracle Wallet in which your database credential information is
stored. The wallet password is typically configured when the wallet is created.

Note: On the GUI, the Wallet Password is exposed on the Logon dialog.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2136

Chapter 5: Using the Driver

Note:

• When using an Oracle Wallet password store (AuthenticationMethod=14), specifying values for the
User Name (LogonID) or Password (Password) options returns a warning and the values are ignored.

• If you are using an cwallet.sso file, you do no need to specify a value for the Wallet Password option.
The password for the wallet is stored in this file and, therefore, no value for this option needs to be provided.

See also
Authentication Method on page 188
Credentials Wallet Path on page 202
Credentials Wallet Entry on page 201
Wallet Password on page 260

Data Encryption Across the Network

If your database connection is not configured to use data encryption, data is sent across the network in a format
that is designed for fast transmission and can be decoded by interceptors, given some time and effort. For
example, text data is often sent across the wire as clear text. Because this format does not provide complete
protection from interceptors, you may want to use data encryption to provide a more secure transmission of
data.

For example, you may want to use data encryption in the following scenarios:

• You have offices that share confidential information over an intranet.

• You send sensitive data, such as credit card numbers, over a database connection.

• You need to comply with government or industry privacy and security requirements.

Your Progress DataDirect for ODBC driver supports Secure Sockets Layer (SSL). SSL is an industry-standard
protocol for sending encrypted data over database connections. SSL secures the integrity of your data by
encrypting information and providing client/server authentication.

Note: Data encryption may adversely affect performance because of the additional overhead (mainly CPU
usage) required to encrypt and decrypt data.

Data Encryption and Integrity

The driver supports the following types of data encryption:

• SSL

• Oracle Advanced Security

In addition, the Oracle driver supports Oracle Advanced Security data integrity checks.

137Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Security

SSL Encryption
SSL works by allowing the client and server to send each other encrypted data that only they can decrypt. SSL
negotiates the terms of the encryption in a sequence of events known as the SSL handshake. During the
handshake, the driver negotiates the highest SSL/TLS protocol available.The result of this negotiation determines
the encryption cipher suite to be used for the SSL session. The driver supports the following protocols using
OpenSSL cipher suites:

• TLS v1.2, TLS v1.1, TLS v1.0

• SSL v3, SSL v2

The encryption cipher suite defines the type of encryption that is used for any data exchanged through an SSL
connection. Some cipher suites are very secure and, therefore, require more time and resources to encrypt
and decrypt data, while others provide less security, but are also less resource intensive. See "SSL Encryption
Cypher Suites" for a list of encryption cipher suites supported by the driver.

The handshake involves the following types of authentication:

• SSL server authentication requires the server to authenticate itself to the client.

• SSL client authentication is optional and requires the client to authenticate itself to the server after the server
has authenticated itself to the client.

See also
SSL Encryption Cipher Suites on page 309

Certificates

SSL requires the use of a digitally-signed document, an x.509 standard certificate, for authentication and the
secure exchange of data. The purpose of this certificate is to tie the public key contained in the certificate
securely to the person/company that holds the corresponding private key.Your Progress DataDirect for ODBC

drivers supports many popular formats. Supported formats include:

• DER Encoded Binary X.509

• Base64 Encoded X.509

• PKCS #12 / Personal Information Exchange

SSL Server Authentication

When the client makes a connection request, the server presents its public certificate for the client to accept
or deny. The client checks the issuer of the certificate against a list of trusted Certificate Authorities (CAs) that
resides in an encrypted file on the client known as a truststore. If the certificate matches a trusted CA in the
truststore, an encrypted connection is established between the client and server. If the certificate does not
match, the connection fails and the driver generates an error.

Most truststores are password-protected. The driver must be able to locate the truststore and unlock the
truststore with the appropriate password. Two connection string attributes are available to the driver to provide
this information: TrustStore and TrustStorePassword. The value of TrustStore is a pathname that specifies the
location of the truststore file.The value of TrustStorePassword is the password required to access the contents
of the truststore.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2138

Chapter 5: Using the Driver

Alternatively, you can configure the driver to trust any certificate sent by the server, even if the issuer is not a
trusted CA. Allowing a driver to trust any certificate sent from the server is useful in test environments because
it eliminates the need to specify truststore information on each client in the test environment.
ValidateServerCertificate, another connection string attribute, allows the driver to accept any certificate returned
from the server regardless of whether the issuer of the certificate is a trusted CA.

Finally, the connection string attribute, HostNameInCertificate, allows an additional method of server verification.
When a value is specified for HostNameInCertificate, it must match the host name of the server, which has
been established by the SSL administrator. This prevents malicious intervention between the client and the
server and ensures that the driver is connecting to the server that was requested.

SSL Client Authentication

If the server is configured for SSL client authentication, the server asks the client to verify its identity after the
server identity has been proven. Similar to server authentication, the client sends a public certificate to the
server to accept or deny. The client stores its public certificate in an encrypted file known as a keystore. Public
certificates are paired with a private key in the keystore. To send the public certificate, the driver must access
the private key.

Like the truststore, most keystores are password-protected. The driver must be able to locate the keystore and
unlock the keystore with the appropriate password. Two connection string attributes are available to the driver
to provide this information: KeyStore and KeyStorePassword.The value of KeyStore is a pathname that specifies
the location of the keystore file.The value of KeystorePassword is the password required to access the keystore.

The private keys stored in a keystore can be individually password-protected. In many cases, the same password
is used for access to both the keystore and to the individual keys in the keystore. It is possible, however, that
the individual keys are protected by passwords different from the keystore password.The driver needs to know
the password for an individual key to be able to retrieve it from the keystore. An additional connection string
attribute, KeyPassword, allows you to specify a password for an individual key.

Designating an OpenSSL Library

The driver uses OpenSSL library files (SSL Support Files) to implement cryptographic functions for data sources
or connections when encrypting data. By default, the driver is configured to use the most secure version of the
library installed with the product; however, you can designate a different version to address security vulnerabilities
or incompatibility issues with your current library. Although the driver is only certified against libraries provided
by Progress, you can also designate libraries that you supply. The methods described in this section can be
used to designate an OpenSSL library file.

Note: For the default library setting, current information, and a complete list of installed OpenSSL libraries,
refer to the readme file installed with your product.

File replacement
In the default configuration, the drivers use the OpenSSL library file located in the \drivers subdirectory for
Windows installations and the /lib subdirectory for UNIX/Linux.You can replace this file with a different library
to change the version used by the drivers. When using this method, the replacement file must contain both the
cryptographic and SSL libraries and use the same file name as the default library. For example, the latest
version of the library files use the following naming conventions:

Windows:

• Latest version: xxtls28.dll

• 1.0.2 and earlier versions: xxssl28.dll

UNIX/Linux:

139Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Security

• Latest version: libxxtls28.so [.sl]

• 1.0.2 and earlier versions: libxxssl28.so [.sl]

Designating a library in the default directory
If you are using the default directory structure for the product, you can use the AllowedOpenSSLVersions option
to designate a library. To use the AllowedOpenSSLVersions option, specify the version number of the library
you want to load. For example, AllowedOpenSSLVersions=1.0.2 loads the 1.0.2 version of OpenSSL
library using the following naming convention and format:

• Windows: install_dir\drivers\xxssl28.so [.sl]

• UNIX/Linux: install_dir/lib/libxxtls28.so [.sl]

Note that this method works only with OpenSSL library files that match Progress's naming convention and
relative installation location.

If you are using the GUI, this option is not exposed on the setup dialog. Instead, use the Extended Options
field on the Advanced tab to configure this option. For more information, see "AllowedOpenSSLVersions."

Designating the absolute path to a library
For libraries that do not use the default directory structure or file names, you must specify the absolute path to
your cryptographic library for the CryptoLibName (CryptoLibName) option and the absolute path to your SSL
library for the SSLLibName (SSLLibName) option. If you are using OpenSSL library files provided by Progress,
these libraries are combined into a single file; therefore, the value specified for these options should be the
same. For non-Progress library files, the libraries may use separate files, which would require specifying the
unique paths to the libeay32.dll (cryptographic library) and ssleay32.dll (SSL library) files.

If you are using a GUI, these options are not exposed on the setup dialog. Instead, use the Extended Options
field on the Advanced tab to configure these options. See "CryptoLibName" and "SSLLibName" for details.

See also
AllowedOpenSSLVersions on page 184
CryptoLibName on page 204
SSLLibName on page 253

Using Oracle Wallet as a Keystore
The driver supports the use of Oracle Wallet as a keystore and truststore. A wallet is a password-protected
container that is created using the Oracle Wallet Manager. It contains trusted certificates for authenticating the
server's public certificate. The wallet may also contain client private key and associated certificates required
for client authentication.

Depending on the contents of your Oracle Wallet, you must provide values for specific connection options as
described in the following scenarios:

• If a wallet contains client certificates, you must specify a value for the Key Store connection option. If you
are using a file in the PKCS#12 format, you must also specify a value for the Key Store Password option.

• If a wallet contains the trusted certificates and client certificates required for both server and client
authentication, you must specify values for only the Trust Store connection option. If you are specifying a
file in the PKCS#12 format, you must also specify a value for the Trust Store Password option. The driver
treats the truststore file as a keystore and loads client certificates required for client authentication.

Oracle Wallet is compliant with PKCS#12 and SSO formats.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2140

Chapter 5: Using the Driver

See also
Key Store on page 227
Key Store Password on page 228
Trust Store on page 257
Trust Store Password on page 258

Oracle Advanced Security
To enable support for SSL connections to Oracle, the Oracle database must be configured with the Oracle
Advanced Security bundle. This is an option available from Oracle as an add-on to Oracle Enterprise Edition
Servers.

The driver also supports encryption and data integrity checks through Oracle Advanced Security. Oracle
Advanced Security provides the Advanced Encryption Standard (AES), DES, 3DES, and RC4 symmetric
cryptosystems for protecting the confidentiality of network traffic.

Encrypting network data provides data privacy so that unauthorized parties cannot view and alter clear text
data as it passes over the network. Attacks on intercepted data include data modification and replay attacks.

• In a data modification attack, an unauthorized party intercepts transmitted data, alters it, and retransmits it.
For example, suppose a customer order for 5 widgets for delivery to an office in San Francisco is intercepted.
A data modification attack might change the quantity to 500 and the delivery address to a warehouse in
Los Angeles, and then retransmit the order.

• In a replay attack, a set of valid data is retransmitted a number of times. For example, an order for 100
widgets is intercepted and then retransmitted ten times so the final order quantity equals 1,000 widgets.

Because data integrity protection operates independently from the encryption process, you can enable data
integrity with or without enabling encryption.

Summary of Security-Related Options

The following table summarizes how security-related connection options work with the drivers. The connection
options are listed alphabetically by the GUI name that appears on the driver Setup dialog box. The connection
string attribute name is listed immediately after the GUI name in parentheses. See "Connection Option
Descriptions" for details about configuring the options.

141Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Security

Table 6: Summary: Authentication Connection Options

DescriptionOption

Specifies the method the driver uses to authenticate the user to the server when
a connection is established.

If set to 1 (Encrypt Password), the driver sends the user ID in clear text and an
encrypted password to the server for authentication.

If set to 3 (Client Authentication), the driver uses client authentication when
establishing a connection.The database server relies on the client to authenticate
the user and does not provide additional authentication.

If set to 4 (Kerberos Authentication), the driver uses Kerberos authentication.
This method supports both Windows Active Directory Kerberos and MIT Kerberos
environments.

When set to 5 (Kerberos with UID & PWD), the driver uses both Kerberos
authentication and user ID and password authentication. The driver first
authenticates the user using Kerberos. If a user ID and password are specified,
the driver reauthenticates using the user name and password supplied. An error
is generated if a user ID and password are not specified.

If set to 6 (NTLM), the driver uses NTLMv1 authentication for Windows clients.

If set to 11 (SSL), the driver uses SSL certificate information to authenticate the
client with the server when using Oracle Wallet. The User Name and Password
options should not be specified. See "Oracle Wallet SSL Authentication" for
additional requirements.

If set to 12 (SSL with UID & Password), the driver uses user ID/password and
SSL authentication to connect with the server when using Oracle Wallet. See
"Oracle Wallet SSL Authentication" for additional requirements.

If set to 14 (Wallet UID & PWD), the driver authenticates to the server using a
user ID and password retrieved from Oracle Wallet. See "Oracle Wallet Password
Store" for additional requirements.

Default: 1 (Encrypt Password)

Authentication Method
(AuthenticationMethod)

Specifies the string value used to identify database credential information stored
in an Oracle Wallet. When Authentication Method is set to 14 (Wallet UID &
PWD), the driver retrieves the user ID and password associated with the specified
value from the wallet and uses them to authenticate to the server. This value
provides a method for the correct user ID and password to be retrieved when
there are multiple pairs in a wallet.

See "Oracle Wallet Password Store" for a complete list of options and settings
required for the Oracle Wallet Password Store feature.

Credentials Wallet Entry
(CredentialsWalletEntry)

Specifies the password used to access the Oracle Wallet in which your database
credential information is stored.When Authentication Method is set to 14 (Wallet
UID & PWD), the driver uses this value to retrieve the database user ID and
password that is stored in the wallet file specified by the Credentials Wallet Path
option.

See "Oracle Wallet Password Store" for a complete list of options and settings
required for the Oracle Wallet Password Store feature.

Wallet Password
(CredentialsWalletPassword)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2142

Chapter 5: Using the Driver

DescriptionOption

Specifies the fully-qualified path to the Oracle Wallet file in which your database
credential information is stored.When Authentication Method is set to 14 (Wallet
UID & PWD), the driver retrieves the database user name and password from
this file.

See "Oracle Wallet Password Store" for a complete list of options and settings
required for the Oracle Wallet Password Store feature.

Credentials Wallet Path
(CredentialsWalletPath)

The name of the GSS client library that the driver uses to communicate with the
Key Distribution Center (KDC).

Default: native (The driver uses the GSS client shipped with the operating
system.)

GSS Client Library
(GSSClient)

Specifies the proxy user ID used for impersonation. The value for Impersonate
User determines your identity and permissions when executing queries. When
a value is specified for this option, the driver authenticates according to the setting
of the Authentication Method option; then, after establishing a connection, the
driver attempts to reauthenticate as the destination user. Note that the
administrator must grant CONNECT THROUGH permission to the authenticated
user in order to impersonate the destination user; otherwise, an error is returned.

Default: None

ImpersonateUser
(ImpersonateUser)

The default user ID that is used to connect to your database.

Default: None

User Name (LogonID)

Table 7: Summary: Data Encryption Connection Options

DescriptionOption

Determines which version of the OpenSSL library file the driver uses for data
encryption.

Default: 1.1.1,1.0.2

AllowedOpenSSLVersions
(AllowedOpenSSLVersions)

Specifies the cryptographic protocols to use when SSL is enabled using the
Encryption Method connection option (EncryptionMethod=1).

Default: TLSv1.2, TLSv1.1, TLSv1

Crypto Protocol Version
(CryptoProtocolVersion)

The absolute path for the OpenSSL library file containing the cryptographic library
to be used by the data source or connection when SSL is enabled. The
cryptograpic library contains the implementations of cryptographic algorithms
the driver uses for data encryption.

Default: Empty string

CryptoLibName
(CryptoLibName)

143Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Security

DescriptionOption

The method the driver uses to encrypt data sent between the driver and the
database server.

If set to 0 (No Encryption), data is not encrypted.

If set to 1 (SSL), data is encrypted using the SSL protocols specified in the Crypto
Protocol Version connection option.

Default: 0 (No Encryption)

Encryption Method
(EncryptionMethod)

A host name for certificate validation when SSL encryption is enabled
(Encryption Method=1) and validation is enabled (Validate Server
Certificate=1).

Default: None

Host Name In Certificate
(HostNameInCertificate)

Specifies the password used to access the individual keys in the keystore file
when SSL is enabled (Encryption Method=1) and SSL client authentication
is enabled on the database server.

Default: None

Key Password
(KeyPassword)

The absolute path of the keystore file to be used when SSL is enabled
(EncryptionMethod=1) and SSL client authentication is enabled on the
database server.

Default: None

Key Store (Keystore)

The password used to access the keystore file when SSL is enabled
(EncryptionMethod=1) and SSL client authentication is enabled on the
database server.

Default: None

Key Store Password
(KeystorePassword)

The absolute path for the OpenSSL library file containing the SSL library to be
used by the data source or connection when SSL is enabled. The SSL library
contains the implementations of SSL protocols the driver uses for data encryption.

Default: Empty string

SSLLibName
(SSLLibName)

The absolute path of the truststore file to be used when SSL is enabled
(EncryptionMethod=1) and server authentication is used.

Default: None

Trust Store (Truststore)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2144

Chapter 5: Using the Driver

DescriptionOption

Specifies the password that is used to access the truststore file when SSL is
enabled (EncryptionMethod=1) and server authentication is used.

Default: None

Trust Store Password
(TruststorePassword)

If enabled, the driver validates the certificate that is sent by the database server.
Any certificate from the server must be issued by a trusted CA in the truststore
file. If the Host Name In Certificate option is specified, the driver also validates
the certificate using a host name. The Host Name In Certificate option provides
additional security against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was requested.

If disabled, the driver does not validate the certificate that is sent by the database
server. The driver ignores any truststore information specified by the Trust Store
and Trust Store Password options.

Default: Enabled

Validate Server Certificate
(ValidateServerCertificate)

See also
Connection Option Descriptions on page 175
Oracle Wallet SSL Authentication on page 135
Oracle Wallet Password Store on page 136

Using DataDirect Connection Pooling

Supported on Windows, UNIX, and Linux only.

The Oracle Wire Protocol driver supports DataDirect Connection Pooling on Windows, UNIX, and Linux
platforms. Connection pooling allows you to reuse connections rather than creating a new one every time the
driver needs to establish a connection to the underlying database. The driver enables connection pooling
without requiring changes to your client application.

Note: Connection pooling works only with connections that are established using SQLConnect or
SQLDriverConnect with the SQL_DRIVER_NO_PROMPT argument and only with applications that are
thread-enabled.

DataDirect connection pooling that is implemented by the DataDirect driver is different than connection pooling
implemented by the Windows Driver Manager. The Windows Driver Manager opens connections dynamically,
up to the limits of memory and server resources. DataDirect connection pooling, however, allows you to control
the number of connections in a pool through the Min Pool Size (minimum number of connections in a pool)
and Max Pool Size (maximum number of connections in a pool) connection options. In addition, DataDirect
connection pooling is cross-platform, allowing it to operate on UNIX and Linux. See "Summary of Pooling-Related
Options" for details about how the connection options manage DataDirect connection pooling.

Important: On Windows, do not use connection pooling for the Windows Driver Manager at the same time
as DataDirect connection pooling.

145Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using DataDirect Connection Pooling

See also
Summary of Pooling-Related Options on page 148

Creating a Connection Pool

Each connection pool is associated with a specific connection string. By default, the connection pool is created
when the first connection with a unique connection string connects to the data source. The pool is populated
with connections up to the minimum pool size before the first connection is returned. Additional connections
can be added until the pool reaches the maximum pool size. If the Max Pool Size option is set to 10 and all
connections are active, a request for an eleventh connection has to wait in queue for one of the 10 pool
connections to become idle. The pool remains active until the process ends or the driver is unloaded.

If a new connection is opened and the connection string does not exactly match an existing pool, a new pool
must be created. By using the same connection string, you can enhance the performance and scalability of
your application.

Adding Connections to a Pool

A connection pool is created in the process of creating each unique connection string that an application uses.
When a pool is created, it is populated with enough connections to satisfy the minimum pool size requirement,
set by the Min Pool Size connection option. The maximum pool size is set by the Max Pool Size connection
option. If an application needs more connections than the number set by Min Pool Size, The driver allocates
additional connections to the pool until the number of connections reaches the value set by Max Pool Size.

Once the maximum pool size has been reached and no usable connection is available to satisfy a connection
request, the request is queued in the driver.The driver waits for the length of time specified in the Login Timeout
connection option for a usable connection to return to the application. If this time period expires and a connection
has not become available, the driver returns an error to the application.

A connection is returned to the pool when the application calls SQLDisconnect.Your application is still
responsible for freeing the handle, but this does not result in the database session ending.

Removing Connections from a Pool

A connection is removed from a connection pool when it exceeds its lifetime as determined by the Load Balance
Timeout connection option. In addition, DataDirect has created connection attributes described in the following
table to give your application the ability to reset connection pools. If connections are in use at the time of these
calls, they are marked appropriately. When SQLDisconnect is called, the connections are discarded instead
of being returned to the pool.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2146

Chapter 5: Using the Driver

Table 8: Pool Reset Connection Attributes

DescriptionConnection Attribute

Calling SQLSetConnectAttr (SQL_ATTR_CLEAR_POOLS,
SQL_CLEAR_ALL_CONN_POOL) clears all the connection
pools associated with the driver that created the
connection.This is a write-only connection attribute.The driver
returns an error if SQLGetConnectAttr
(SQL_ATTR_CLEAR_POOLS) is called.

SQL_ATTR_CLEAR_POOLS Value:
SQL_CLEAR_ALL_CONN_POOL

Calling SQLSetConnectAttr (SQL_ATTR_CLEAR_POOLS,
SQL_CLEAR_CURRENT_CONN_POOL) clears the
connection pool that is associated with the current
connection.This is a write-only connection attribute.The driver
returns an error if SQLGetConnectAttr
(SQL_ATTR_CLEAR_POOLS) is called.

SQL_ATTR_CLEAR_POOLS Value:
SQL_CLEAR_CURRENT_CONN_POOL

Note: By default, if removing a connection causes the number of connections to drop below the number
specified in the Min Pool Size option, a new connection is not created until an application needs one.

Handling Dead Connections in a Pool

What happens when an idle connection loses its physical connection to the database? For example, suppose
the database server is rebooted or the network experiences a temporary interruption. An application that
attempts to connect could receive errors because the physical connection to the database has been lost.

Your Progress DataDirect for ODBC driver handles this situation transparently to the user. The application does
not receive any errors on the connection attempt because the driver simply returns a connection from a
connection pool. The first time the connection handle is used to execute a SQL statement, the driver detects
that the physical connection to the server has been lost and attempts to reconnect to the server before executing
the SQL statement. If the driver can reconnect to the server, the result of the SQL execution is returned to the
application; no errors are returned to the application.

The driver uses connection failover option values, if they are enabled, when attempting this seamless
reconnection; however, it attempts to reconnect even if these options are not enabled. See "Connection Failover"
for information about configuring the driver to connect to a backup server when the primary server is not
available.

Note: If the driver cannot reconnect to the server (for example, because the server is still down), an error is
returned indicating that the reconnect attempt failed, along with specifics about the reason the connection
failed.

The technique that Progress DataDirect uses for handling dead connections in connection pools allows for
maximum performance of the connection pooling mechanism. Some drivers periodically test the server with a
dummy SQL statement while the connections sit idle. Other drivers test the server when the application requests
the use of the connection from the connection pool. Both of these approaches add round trips to the database
server and ultimately slow down the application during normal operation.

See also
Connection Failover on page 124

147Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using DataDirect Connection Pooling

Connection Pool Statistics

Progress DataDirect has created a connection attribute to monitor the status of the Progress DataDirect for

ODBC connection pools. This attribute, which is described in the following table, allows your application to fetch
statistics for the pool to which a connection belongs.

Table 9: Pool Statistics Connection Attribute

DescriptionConnection Attribute

Calling SQLGetConnectAttr (SQL_ATTR_POOL_INF,
SQL_GET_POOL_INFO) returns a PoolInfoStruct that contains the
statistics for the connection pool to which this connection belongs.
This PoolInfoStruct is defined in qesqlext.h. For example:

SQLGetConnectAttr(hdbc, SQL_ATTR_POOL_INFO,
PoolInfoStruct *,
SQL_LEN_BINARY_ATTR(PoolInfoStruct), &len);

This is a read-only connection attribute. The driver returns an error if
SQLSetConnectAttr (SQL_ATTR_POOL_INFO) is called.

SQL_ATTR_POOL_INFO Value:
SQL_GET_POOL_INFO

Summary of Pooling-Related Options

The following table summarizes how connection pooling-related connection options work with the drivers. See
"Connection Option Descriptions" for additional details about configuring the options.

Table 10: Summary: Connection Pooling Connection Options

CharacteristicOption

Specifies whether to use the driver’s connection pooling.

If set to 1 (Enabled), the driver uses connection pooling.

If set to 0 (Disabled), the driver does not use connection pooling.

Default: 0 (Disabled)

Connection Pooling (Pooling)

Determines whether the state of connections that are removed from the
connection pool for reuse by the application is reset to the initial configuration
of the connection.If set to 1 (Enabled), the state of connections removed
from the connection pool for reuse by an application is reset to the initial
configuration of the connection. Resetting the state can negatively impact
performance because additional commands must be sent over the network
to the server to reset the state of the connection.

If 0 (Disabled), the state of connections is not reset.

Default: 0 (Disabled)

Connection Reset
(ConnectionReset)

An integer value to specify the amount of time, in seconds, to keep
connections open in a connection pool.

Default: 0

Load Balance Timeout
(LoadBalanceTimeout)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2148

Chapter 5: Using the Driver

CharacteristicOption

An integer value to specify the maximum number of connections within a
single pool.

Default: 100

Max Pool Size (MaxPoolSize)

An integer value to specify the minimum number of connections that are
opened and placed in a connection pool when it is created. If set to 0, no
connections are opened in addition to the current existing connection.

Default: 0

Min Pool Size (MinPoolSize)

See also
Connection Option Descriptions on page 175

Using DataDirect Bulk Load

Supported on Windows, UNIX, and Linux only.

On Windows, UNIX, and Linux, the driver supports DataDirect Bulk Load when connected to Oracle databases
version 9i R2 and higher. This feature allows your application to send large numbers of rows of data to a
database. The driver sends the data to the database in a continuous stream instead of numerous smaller
database packets. Similar to batch operations, using bulk load improves performance because far fewer network
round trips are required. Bulk load bypasses the data parsing usually done by the database, providing an
additional performance gain over batch operations.

DataDirect Bulk Load requires a licensed installation of the drivers. If the drivers are installed with an evaluation
license, the bulk load feature is available for prototyping with your applications, but with limited scope. Contact
your sales representative or Progress DataDirect SupportLink for further information.

Because a bulk load operation may bypass data integrity checks, your application must ensure that the data
it is transferring does not violate integrity constraints in the database. For example, suppose you are bulk
loading data into a database table and some of that data duplicates data stored as a primary key, which must
be unique. The driver will not throw an exception to alert you to the error; your application must provide its own
data integrity checks.

Bulk load operations are accomplished by exporting the results of a query from a database into a
comma-separated value (CSV) file, a bulk load data file. The driver then loads the data from bulk load data file
into a different database. The file can be used by any DataDirect for ODBC driver. In addition, the bulk load data
file is supported by other DataDirect product lines that feature bulk loading, for example, a DataDirect Connect
for ADO.NET data provider that supports bulk load.

Suppose that you had customer data on an Oracle server and need to export it to a DB2 server. The driver
would perform the following steps:

149Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using DataDirect Bulk Load

1. Application using Oracle Wire Protocol driver sends query to and receives results from Oracle server.

2. Driver exports results to bulk load data file.

3. Driver retrieves results from bulk load data file.

4. Driver bulk loads results on DB2 server.

Bulk Export and Load Methods

You can take advantage of DataDirect Bulk Load either through the Driver setup dialog or programmatically.

Applications that are already coded to use parameter array batch functionality can leverage DataDirect Bulk
Load features through the Enable Bulk Load connection option on the Bulk tab of the Driver setup dialog.
Enabling this option automatically converts the parameter array batch operation to use the database bulk load
protocol without any code changes to your application.

If you are not using parameter array batch functionality, the bulk operation buttons Export Table and Load
Table on the Bulk tab of the driver Setup dialog also allow you to use bulk load functionality without any code
changes. See "Bulk tab" for a description of the Bulk tab.

If you want to integrate bulk load functionality seamlessly into your application, you can include code to use
the bulk load functions exposed by the driver.

For your applications to use DataDirect Bulk Load functionality, they must obtain driver connection handles
and function pointers, as follows:

1. Use SQLGetInfo with the parameter SQL_DRIVER_HDBC to obtain the driver’s connection handle from
the Driver Manager.

2. Use SQLGetInfo with the parameter SQL_DRIVER_HLIB to obtain the driver’s shared library or DLL handle
from the Driver Manager.

3. Obtain function pointers to the bulk load functions using the function name resolution method specific to
your operating system. The bulk.c example program shipped with the drivers contains the function
resolveName that illustrates how to obtain function pointers to the bulk load functions.

This is detailed in the code samples that follow.

See also
Bulk tab on page 99

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2150

Chapter 5: Using the Driver

Exporting Data from a Database

You can export data from a database in one of three ways:

• From a table by using the driver Setup dialog

• From a table by using DataDirect functions

• From a result set by using DataDirect statement attributes

From the DataDirect driver Setup dialog, select the Bulk tab and click Export Table. See the driver configuration
chapter for a description of this procedure.

Your application can export a table using the DataDirect functions ExportTableToFile (ANSI application) or
ExportTableToFileW (Unicode application). The application must first obtain driver connection handles and
function pointers, as shown in the following example:

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PExportTableToFile exportTableToFile;

char tableName[128];
char fileName[512];
char logFile[512];
int errorTolerance;
int warningTolerance;
int codePage;

/* Get the driver's connection handle from the DM.
 This handle must be used when calling directly into the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}
 exportTableToFile = (PExportTableToFile)
 resolveName (hmod, "ExportTableToFile");
if (! exportTableToFile) {
 printf ("Cannot find ExportTableToFile!\n");
 exit (255);
}

rc = (*exportTableToFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) fileName,
 codePage,
 errorTolerance, warningTolerance,
 (const SQLCHAR *) logFile);
if (rc == SQL_SUCCESS) {
 printf ("Export succeeded.\n");
}
else {

151Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using DataDirect Bulk Load

 driverError (driverHandle, hmod);
}

Your application can export a result set using the DataDirect statement attributes SQL_BULK_EXPORT and
SQL_BULK_EXPORT_PARAMS.

The export operation creates a bulk load data file with a .csv extension in which the exported data is stored.
For example, assume that a source table named GBMAXTABLE contains four columns. The resulting bulk
load data file GBMAXTABLE.csv containing the results of a query would be similar to the following:

1,0x6263,"bc","bc"
2,0x636465,"cde","cde"
3,0x64656667,"defg","defg"
4,0x6566676869,"efghi","efghi"
5,0x666768696a6b,"fghijk","fghijk"
6,0x6768696a6b6c6d,"ghijklm","ghijklm"
7,0x68696a6b6c6d6e6f,"hijklmno","hijklmno"
8,0x696a6b6c6d6e6f7071,"ijklmnopq","ijklmnopq"
9,0x6a6b6c6d6e6f70717273,"jklmnopqrs","jklmnopqrs"
10,0x6b,"k","k"

A bulk load configuration file with and .xml extension is also created when either a table or a result set is
exported to a bulk load data file. See "The Bulk Load Configuration File" for an example of a bulk load
configuration file.

In addition, a log file of events as well as external overflow files can be created during a bulk export operation.
The log file is configured through either the driver Setup dialog Bulk tab, the ExportTableToFile function, or the
SQL_BULK_EXPORT statement attribute.The external overflow files are configured through connection options;
see "External Overflow Files" for details.

See also
The Bulk Load Configuration File on page 153
External Overflow Files on page 156

Bulk Loading to a Database

You can load data from the bulk load data file into the target database through the DataDirect driver Setup
dialog by selecting the Bulk tab and clicking Load Table. See "Bulk Tab" for a description of this procedure.

Your application can also load data from the bulk load data file into the target database using the using the
DataDirect functions LoadTableFromFile (ANSI application) or LoadTableFromFileW (Unicode application).
The application must first obtain driver connection handles and function pointers, as shown in the following
example:

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PLoadTableFromFile loadTableFromFile;
char tableName[128];
char fileName[512];
char configFile[512];
char logFile[512];
char discardFile[512];
int errorTolerance;
int warningTolerance;
int loadStart;
int loadCount;
int readBufferSize;

/* Get the driver's connection handle from the DM.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2152

Chapter 5: Using the Driver

 This handle must be used when calling directly into the driver.*/

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}
/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

loadTableFromFile = (PLoadTableFromFile)
 resolveName (hmod, "LoadTableFromFile");
if (! loadTableFromFile) {
 printf ("Cannot find LoadTableFromFile!\n");
 exit (255);
}

rc = (*loadTableFromFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) fileName,
 errorTolerance, warningTolerance,
 (const SQLCHAR *) configFile,
 (const SQLCHAR *) logFile,
 (const SQLCHAR *) discardFile,
 loadStart, loadCount,
 readBufferSize);
if (rc == SQL_SUCCESS) {
 printf ("Load succeeded.\n");
}
else {
 driverError (driverHandle, hmod);
}

Use the BulkLoadBatchSize connection attribute to specify the number of rows the driver loads to the data
source at a time when bulk loading data. Performance can be improved by increasing the number of rows the
driver loads at a time because fewer network round trips are required. Be aware that increasing the number
of rows that are loaded also causes the driver to consume more memory on the client.

A log file of events as well as a discard file that contains rows rejected during the load can be created during
a bulk load operation. These files are configured through either the driver Setup dialog Bulk tab or the
LoadTableFromFile function.

The discard file is in the same format as the bulk load data file. After fixing reported issues in the discard file,
the bulk load can be reissued using the discard file as the bulk load data file.

See also
Bulk tab on page 99
DataDirect Bulk Load Functions on page 317

The Bulk Load Configuration File

A bulk load configuration file is created when either a table or a result set is exported to a bulk load data file.
This file has the same name as the bulk load data file, but with an .xml extension.

153Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using DataDirect Bulk Load

The bulk load configuration file defines in its metadata the names and data types of the columns in the bulk
load data file.The file defines these names and data types based on the table or result set created by the query
that exported the data.

It also defines other data properties, such as length for character and binary data types, the character encoding
code page for character types, precision and scale for numeric types, and nullability for all types.

When a bulk load data file cannot read its configuration file, the following defaults are assumed:

• All data is read in as character data. Each value between commas is read as character data.

• The default character set is defined, on Windows, by the current Windows code page. On UNIX/Linux, it is
the IANAAppCodePage value, which defaults to 4.

For example, the format of the bulk load data file GBMAXTABLE.csv (discussed in "Exporting Data from a
Database") is defined by the bulk load configuration file, GBMAXTABLE.xml, as follows:

<?xml version="1.0" encoding="utf-8"?>
<table codepage="UTF-16LE" xsi:noNamespaceSchemaLocation=
"http://media.datadirect.com/download/docs/ns/bulk/BulkData.xsd" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
 <row>
 <column datatype="DECIMAL" precision="38" scale="0" nullable=
 "false">INTEGERCOL</column>
 <column datatype="VARBINARY" length="10" nullable=
 "true">VARBINCOL</column>
 <column datatype="VARCHAR" length="10" sourcecodepage="Windows-1252"
 externalfilecodepage="Windows-1252" nullable="true">VCHARCOL</column>
 <column datatype="VARCHAR" length="10" sourcecodepage="Windows-1252"
 externalfilecodepage="Windows-1252" nullable="true">UNIVCHARCOL</column>
 </row>
</table>

See also
Exporting Data from a Database on page 151

Bulk Load Configuration File Schema for Oracle
The bulk load configuration file is supported by an underlying XML Schema defined at:

http://media.datadirect.com/download/docs/ns/bulk/BulkData.xsd

The bulk load configuration file must conform to the bulk load configuration XML schema. Each bulk export
operation generates a bulk load configuration file in UTF-8 format. If the bulk load data file cannot be created
or does not comply with the XML Schema described in the bulk load configuration file, an error is generated.

Verification of the Bulk Load Configuration File
You can verify the metadata in the configuration file against the data structure of the target database table.
This insures that the data in the bulk load data file is compatible with the target database table structure.

The verification does not check the actual data in the bulk load data file, so it is possible that the load can fail
even though the verification succeeds. For example, if you were to update the bulk load data file manually such
that it has values that exceed the maximum column length of a character column in the target table, the load
would fail.

Not all of the error messages or warnings that are generated by verification necessarily mean that the load will
fail. Many of the messages simply notify you about possible incompatibilities between the source and target
tables. For example, if the bulk load data file has a column that is defined as an integer and the column in the
target table is defined as smallint, the load may still succeed if the values in the source column are small enough
that they fit in a smallint column.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2154

Chapter 5: Using the Driver

http://media.datadirect.com/download/docs/ns/bulk/BulkData.xsd

To verify the metadata in the bulk load configuration file through the DataDirect driver Setup dialog, select the
Bulk tab and click Verify. See "Bulk tab" for a description of this procedure.

Your application can also verify the metadata of the bulk load configuration file using the DataDirect functions
ValidateTableFromFile (ANSI application) or ValidateTableFromFileW (Unicode application). The application
must first obtain driver connection handles and function pointers, as shown in the following example:

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PValidateTableFromFile validateTableFromFile;
char tableName[128];
char configFile[512];
char messageList[10240];
SQLLEN numMessages;
/* Get the driver's connection handle from the DM.
 This handle must be used when calling directly into the driver. */
rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}/* Get the DM's shared library or DLL handle to the driver. */
rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}
validateTableFromFile = (PValidateTableFromFile)
 resolveName (hmod, "ValidateTableFromFile");
if (!validateTableFromFile) {
 printf ("Cannot find ValidateTableFromFile!\n");
 exit (255);
}
messageList[0] = 0;
numMessages = 0;
rc = (*validateTableFromFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) configFile,
 (SQLCHAR *) messageList,
 sizeof (messageList),
 &numMessages);
printf ("%d message%s%s\n", numMessages,
 (numMessages == 0) ? "s" :
 ((numMessages == 1) ? " : " : "s : "),
 (numMessages > 0) ? messageList : "");
if (rc == SQL_SUCCESS) {
 printf ("Validate succeeded.\n");
}else {
 driverError (driverHandle, hmod);
}

See also
Bulk tab on page 99

155Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using DataDirect Bulk Load

Sample Applications

Progress DataDirect provides a sample application that demonstrates the bulk export, verification, and bulk
load operations. This application is located in the \samples\bulk subdirectory of the product installation
directory along with a text file named bulk.txt. Please consult bulk.txt for instructions on using the sample
bulk load application.

A bulk streaming application is also provided in the \samples\bulkstrm subdirectory along with a text file
named bulkstrm.txt. Please consult bulkstrm.txt for instructions on using the bulk streaming application.

Character Set Conversions

It is most performance-efficient to transfer data between databases that use the same character sets. At times,
however, you might need to bulk load data between databases that use different character sets.You can do
this by choosing a character set for the bulk load data file that will accommodate all data. If the source table
contains character data that uses different character sets, then one of the Unicode character sets, UTF-8,
UTF-16BE, or UTF-16LE must be specified for the bulk load data file. A Unicode character set should also be
specified in the case of a target table uses a different character set than the source table to minimize conversion
errors. If the source and target tables use the same character set, that set should be specified for the bulk load
data file.

A character set is defined by a code page.The code page for the bulk load data file is defined in the configuration
file and is specified through either the Code Page option of the Export Table driver Setup dialog or through the
IANAAppCodePage parameter of the ExportTableToFile function. Any code page listed in "Code Page Values"
is supported for the bulk load data file.

Any character conversion errors are handled based on the value of the Report Codepage Conversion Errors
connection option. See the individual driver chapters for a description of this option.

The configuration file may optionally define a second code page value for each character column
(externalfilecodepage). If character data is stored in an external overflow file (see "External Overflow
Files"), this second code page value is used for the external file.

See also
Code Page Values on page 267
External Overflow Files on page 156

External Overflow Files

In addition to the bulk load data file, DataDirect Bulk Load can store bulk data in external overflow files. These
overflow files are located in the same directory as the bulk load data file. Different files are used for binary data
and character data. Whether or not to use external overflow files is a performance consideration. For example,
binary data is stored as hexadecimal-encoded character strings in the main bulk load data file, which increases
the size of the file per unit of data stored. External files do not store binary data as hex character strings, and,
therefore, require less space. On the other hand, more overhead is required to access external files than to
access a single bulk load data file, so each bulk load situation must be considered individually.

The value of the Bulk Binary Threshold connection option determines the threshold, in KB, over which binary
data is stored in external files instead of in the bulk load data file. Likewise, the Bulk Character Threshold
connection option determines the threshold for character data.

In the case of an external character data file, the character set of the file is governed by the bulk load
configuration file. If the bulk load data file is Unicode and the maximum character size of the source data is 1,
then the data is stored in its source code page. See "Character Set Conversions".

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2156

Chapter 5: Using the Driver

The file name of the external file contains the bulk load data file name, a six-digit number, and a ".lob" extension
in the following format: CSVfilename_nnnnnn.lob. Increments start at 000001.lob.

See also
Character Set Conversions on page 156

Limitations

• A bulk operation is not allowed in a manual transaction if it is not the first event.

• Once a bulk operation is started, any non-bulk operation is disallowed until the transaction is committed.

• Because of Oracle limitations, issuing a SELECT statement to determine a row count may return different
results before and after a bulk load operation.

Summary of Related Options for DataDirect Bulk Load

DescriptionConnection Options: Bulk

The number of rows that the driver sends to the database at a time
during bulk operations. This value applies to all methods of bulk
loading.

Default: 1024

Batch Size (BulkLoadBatchSize)

The maximum size, in KB, of binary data that is exported to the bulk
data file.

If set to -1, all binary data, regardless of size, is written to the bulk
data file, not to an external file.

If set to 0, all binary data, regardless of size, is written to an external
file, not the bulk data file. A reference to the external file is written to
the bulk data file.

If set to x, any binary data exceeding this specified number of KB is
written to an external file, not the bulk data file. A reference to the
external file is written to the bulk data file.

Default: None

Bulk Binary Threshold
(BulkBinaryThreshold)

The maximum size, in KB, of character data that is exported to the
bulk data file.

If set to -1, all character data, regardless of size, is written to the bulk
data file, not to an external file.

If set to 0, all character data regardless of size, is written to an external
file, not the bulk data file. A reference to the external file is written to
the bulk data file.

If set to x, any character data exceeding this specified number of KB
is written to an external file, not the bulk data file. A reference to the
external file is written to the bulk data file.

Default: -1

Bulk Character Threshold
(BulkCharacterThreshold)

157Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using DataDirect Bulk Load

DescriptionConnection Options: Bulk

Toggles options for the bulk load process.

If set to 128 (no index errors is enabled), the driver stops a bulk load
operation when a value that would cause an index to be invalidated
is loaded. For example, if a value is loaded that violates a unique or
non-null constraint, the driver stops the bulk load operation and
discards all data being loaded, including any data that was loaded
prior to the problem value.

If disabled, the bulk load operation continues even if a value that would
cause an index to be invalidated is loaded.

Default: Disabled

Bulk Load Options (BulkLoadOptions)

Specifies the character that the driver will use to delimit the field entries
in a bulk load data file.

Default: None

Field Delimiter
(BulkLoadFieldDelimiter)

Specifies the character that the driver will use to delimit the record
entries in a bulk load data file.

Default: None

Record Delimiter
(BulkLoadRecordDelimiter)

See "Connection Option Descriptions" for details about configuring the options.

See also
Connection Option Descriptions on page 175

Using Bulk Load for Batch Inserts
The driver uses the native bulk load protocol for database connections when the Enable Bulk Load connection
option is set to true (enabled). For example, if you set the Enable Bulk Load connection option to true, the
driver would use bulk load for the native parameter array insert request.

In some cases, the driver may not be able to use bulk load because of restrictions enforced by the bulk load
protocol and will downgrade to a batch mechanism. For example, if the data being loaded has a data type that
is not supported by the bulk load protocol, the driver cannot use bulk load, but will use the native parameter
array insert mechanism instead.

Use the Bulk Load Batch Size connection option to specify the number of rows the driver loads at a time when
bulk loading data. Performance can be improved by increasing the number of rows the driver loads at a time
because fewer network round trips are required. Be aware that increasing the number of rows that are loaded
also causes the driver to consume more memory on the client.

Determining the Bulk Load Protocol

Bulk operations can be performed using a dedicated bulk load protocol, that is, the protocol of the underlying
database system, or by using parameter array batch operations. Dedicated protocols are generally more
performance-efficient than parameter arrays. In some cases, however, you must use parameter arrays, for
example, when the data to be loaded is in a data type not supported by the dedicated bulk protocol.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2158

Chapter 5: Using the Driver

The Enable Bulk Load connection option determines bulk load behavior.When the option is enabled, the driver
uses database bulk load protocols unless it encounters a problem, in which case it returns a warning or an
error. In this situation, the driver falls back to using standard parameter arrays.

Limitations

The driver supports native parameter arrays in Oracle 9i and higher databases with the following limitations:

• A bulk operation is not allowed in a manual transaction if it is not the first event.

• Bulk inserts into views are not allowed.

• Once a bulk operation is started, any non-bulk operation is disallowed until the transaction is committed.

• The Oracle Wire Protocol driver currently does not support the use of BLOB, CLOB, LONG, LONG RAW,
and XMLType data types when using bulk load for parameter array batch.

• Because of Oracle limitations, issuing a SELECT statement to determine a row count may return different
results before and after a bulk load operation.

• Oracle does not support literal values in a bulk load operation.You must use parameter markers for all
columns being loaded.

• INSERT INTO SELECT statements are not supported.

Summary of Related Options for Bulk Load for Batch Inserts

DescriptionConnection Options: Bulk

The number of rows that the driver sends to the database at a time
during bulk operations. This value applies to all methods of bulk
loading.

Default: 1024

Batch Size (BulkLoadBatchSize)

Specifies the bulk load method.

If enabled, the driver uses the database bulk load protocol when an
application executes an INSERT with multiple rows of parameter data.
If the protocol cannot be used, the driver returns a warning.

If disabled, the driver uses standard parameter arrays.

Default: Disabled

Enable Bulk Load (EnableBulkLoad)

See "Connection Option Descriptions" for details about configuring the options.

See also
Connection Option Descriptions on page 175

159Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Bulk Load for Batch Inserts

Persisting a Result Set as an XML Data File
DataDirect for ODBC drivers allow you to persist a result set as an XML data file with embedded schema. To
implement XML persistence, a client application must do the following:

1. Turn on STATIC cursors. For example:

SQLSetStmtAttr (hstmt, SQL_ATTR_CURSOR_TYPE, SQL_CURSOR_STATIC, SQL_IS_INTEGER)

Note: A result set can be persisted as an XML data file only if the result set is generated using STATIC
cursors. Otherwise, the following error is returned:

Driver only supports XML persistence when using driver’s static cursors.

2. Execute a SQL statement. For example:

SQLExecDirect (hstmt, "SELECT * FROM GTABLE", SQL_NTS)

3. Persist the result set as an XML data file. For example:

SQLSetStmtAttr (hstmt, SQL_PERSIST_AS_XML, "C:\temp\GTABLE.XML", SQL_NTS)

Note: A statement attribute is available to support XML persistence, SQL_PERSIST_AS_XML. A client
application must call SQLSetStmtAttr with this attribute as an argument. See the following table for the
definition of valid arguments for SQLSetStmtAttr.

DefinitionArgument

The handle of the statement that contains the result set to persist as XML.StatementHandle

SQL_PERSIST_AS_XML. This statement attribute can be found in the file
qesqlext.h, which is installed with the driver.

Attribute

Pointer to a URL that specifies the full path name of the XML data file to be
generated. The directory specified in the path name must exist, and if the
specified file name exists, the file will be overwritten.

ValuePtr

The length of the string pointed to by ValuePtr or SQL_NTS if ValuePtr points
to a NULL-terminated string.

StringLength

A client application can choose to persist the data at any time that the statement is in an executed or
cursor-positioned state. At any other time, the driver returns the following message:

Function Sequence Error

Using the Windows XML Persistence Demo Tool

The 32-bit driver for Windows ships with an XML persistence demo tool. This tool is installed in the product
installation directory.

The tool has a graphical user interface and allows you to persist data as an XML data file.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2160

Chapter 5: Using the Driver

To use the Windows XML Persistence Demo tool:

1. From the product program group, select XML Persistence Demo.The XMLPersistence dialog box appears.

2. First, you must connect to the database. Click Connect. The Select Data Source dialog box appears.

3. You must either select an existing data source or create a new one. Take one of the following actions:

• Select an existing data source and click OK.

• Create a new file data source by clicking New. The Create New Data Source dialog box appears. Follow
the instructions in the dialog box.

• Create a new machine data source by clicking the Machine Data Source tab and clicking New. The
Create New Data Source dialog box appears. Follow the instructions in the dialog box.

4. After you have connected to a database, type a SQL Select statement in the Query text box of the XML
Persistence dialog box. Then, click Persist. The Save As dialog box appears.

161Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Persisting a Result Set as an XML Data File

5. Specify a name and location for the XML data file that will be created. Then, click OK.

Note that the Status box in the XML Persistence dialog box displays whether the action failed or succeeded.

6. Click Disconnect to disconnect from the database.

7. Click Close to exit the tool.

Using the UNIX/Linux XML Persistence Demo Tool

On UNIX and Linux, the drivers are shipped with an XML persistence demo tool named demoodbc. This tool
is installed in the installation directory, in the /samples/demo subdirectory. For information about how to use
this tool, refer to the demoodbc.txt file installed in the demo subdirectory.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2162

Chapter 5: Using the Driver

6
Troubleshooting

This part guides you through troubleshooting your Progress DataDirect for ODBC for Oracle Wire Protocol driver.
It provides you with solutions to common problems and documents error messages that you may receive.

For details, see the following topics:

• Diagnostic Tools

• Error Messages

• Troubleshooting

Diagnostic Tools
This chapter discusses the diagnostic tools you use when configuring and troubleshooting your ODBC
environment.

ODBC Trace

ODBC tracing allows you to trace calls to ODBC drivers and create a log of the traces.

Creating a Trace Log
Creating a trace log is particularly useful when you are troubleshooting an issue.

To create a trace log:

163Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

1. Enable tracing (see "Enabling Tracing" for more information).

2. Start the ODBC application and reproduce the issue.

3. Stop the application and turn off tracing.

4. Open the log file in a text editor and review the output to help you debug the problem.

For a complete explanation of tracing, refer to the following Progress DataDirect Knowledgebase document:

http://knowledgebase.progress.com/articles/Article/3049

See also
Enabling Tracing on page 164

Enabling Tracing
Progress DataDirect provides a tracing library that is enhanced to operate more efficiently, especially in
production environments, where log files can rapidly grow in size. The DataDirect tracing library allows you to
control the size and number of log files.

On Windows, you can enable tracing through the Tracing tab of the ODBC Data Source Administrator.

On UNIX and Linux, you can enable tracing by directly modifying the [ODBC] section in the system information
(odbc.ini) file.

On macOS, you can also enable tracing through the Tracing tab of the iODBC Data Source Administrator.

Windows ODBC Administrator

 On Windows, open the ODBC Data Source Administrator and select the Tracing tab. To specify the path
and name of the trace log file, type the path and name in the Log File Path field or click Browse to select a log
file. If no location is specified, the trace log resides in the working directory of the application you are using.

Click Select DLL in the Custom Trace DLL pane to select the DataDirect enhanced tracing library,
xxtrcyy.dll, where xx represents either iv (32-bit version) or dd (64-bit version), and yy represents the
driver level number, for example, ivtrc28.dll.The library is installed in the \Windows\System32 directory.

After making changes on the Tracing tab, click Apply for them to take effect.

Enable tracing by clicking Start Tracing Now. Tracing continues until you disable it by clicking Stop Tracing
Now. Be sure to turn off tracing when you are finished reproducing the issue because tracing decreases the
performance of your ODBC application.

When tracing is enabled, information is written to the following trace log files:

• Trace log file (trace_filename.log) in the specified directory.

• Trace information log file (trace_filenameINFO.log). This file is created in the same directory as the
trace log file and logs the following SQLGetInfo information:

• SQL_DBMS_NAME

• SQL_DBMS_VER

• SQL_DRIVER_NAME

• SQL_DRIVER_VER

• SQL_DEFAULT_TXN_ISOLATION

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2164

Chapter 6: Troubleshooting

http://knowledgebase.progress.com/articles/Article/3049

The DataDirect enhanced tracing library allows you to control the size and number of log files. The file size
limit of the log file (in KB) is specified by the Windows Registry key ODBCTraceMaxFileSize. Once the size
limit is reached, a new log file is created and logging continues in the new file until it reaches its file size limit,
after which another log file is created, and so on.

The maximum number of files that can be created is specified by the Registry key ODBCTraceMaxNumFiles.
Once the maximum number of log files is created, tracing reopens the first file in the sequence, deletes the
content, and continues logging in that file until the file size limit is reached, after which it repeats the process
with the next file in the sequence. Subsequent files are named by appending sequential numbers, starting at
1 and incrementing by 1, to the end of the original file name, for example, SQL1.LOG, SQL2.LOG, and so on.

The default values of ODBCTraceMaxFileSize and ODBCTraceMaxNumFiles are 102400 KB and 10,
respectively. To change these values, add or modify the keys in the following Windows Registry section:

[HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI\ODBC]

Warning: Do not edit the Registry unless you are an experienced user. Consult your system administrator if
you have not edited the Registry before.

Edit each key using your values and close the Registry.

macOS iODBC Administrator

On macOS, you can enable tracing through the Tracing tab of the iODBC Data Source Administrator.

To specify the path and name of the trace log file, type the path and name in the Log file path field or click
Browse to select a log file. If no location is specified, the trace log resides in the working directory of the
application you are using.

The iODBC Data Source Administrator ships with a trace library that is enabled by default. If you want to use
a custom library instead, type the path and name of the library in the Custom trace library field or click Browse
to select the library.

To enable tracing, indicate the frequency of tracing for the "When to trace" option on the Trace tab. If you select
All the time, tracing continues until you disable it. Be sure to turn off tracing when you are finished reproducing
the issue because tracing decreases the performance of your ODBC application.

After making changes on the Tracing tab, click Apply for them to take effect.

The DataDirect enhanced tracing library gives you more control over tracing. See "System Information (odbc.ini)
File" for a complete discussion of how to configure enhanced tracing.

See also
System Information (odbc.ini) File on page 166

165Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Diagnostic Tools

System Information (odbc.ini) File

The [ODBC] section of the system information file includes several keywords that control tracing:

Trace=[0 | 1]
TraceFile=trace_filename
TraceDll=ODBCHOME/lib/xxtrcyy.zz
ODBCTraceMaxFileSize=file_size
ODBCTraceMaxNumFiles=file_number
TraceOptions=0

where:

Trace=[0 | 1]

Allows you to enable tracing by setting the value of Trace to 1. Disable tracing by setting the value
to 0 (the default). Tracing continues until you disable it. Be sure to turn off tracing when you are
finished reproducing the issue because tracing decreases the performance of your ODBC application.

TraceFile=trace_filename

Specifies the path and name of the trace log file. If no path is specified, the trace log resides in the
working directory of the application you are using.

TraceDll=ODBCHOME/lib/xxtrcyy.zz

Specifies the library to use for tracing. The driver installation includes a DataDirect enhanced library
to perform tracing, xxtrcyy.zz, where xx represents either iv (32-bit version) or dd (64-bit version),
yy represents the driver level number, and zz represents either so or sl. For example, ivtrc28.so
is the 32-bit version of the library. To use a custom shared library instead, enter the path and name
of the library as the value for the TraceDll keyword.

The DataDirect enhanced tracing library allows you to control the size and number of log files with
the ODBCTraceMaxFileSize and ODBCTraceMaxNumFiles keywords.

ODBCTraceMaxFileSize=file_size

The ODBCTraceMaxFileSize keyword specifies the file size limit (in KB) of the log file. Once this file
size limit is reached, a new log file is created and logging continues in the new file until it reaches
the file size limit, after which another log file is created, and so on. The default is 102400.

ODBCTraceMaxNumFiles=file_number

The ODBCTraceMaxNumFiles keyword specifies the maximum number of log files that can be
created. The default is 10. Once the maximum number of log files is created, tracing reopens the
first file in the sequence, deletes the content, and continues logging in that file until the file size limit
is reached, after which it repeats the process with the next file in the sequence. Subsequent files
are named by appending sequential numbers, starting at 1 and incrementing by 1, to the end of the
original file name, for example, odbctrace1.out, odbctrace2.out, and so on.

TraceOptions=[0 | 1 | 2 | 3]

The ODBCTraceOptions keyword specifies whether to print the current timestamp, parent process
ID, process ID, and thread ID for all ODBC functions to the output file. The default is 0.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2166

Chapter 6: Troubleshooting

• If set to 0, the driver uses standard ODBC tracing.

• If set to 1, the log file includes a timestamp on ENTRY and EXIT of each ODBC function.

• If set to 2, the log file prints a header on every line. By default, the header includes the parent
process ID and process ID.

• If set to 3, both TraceOptions=1 and TraceOptions=2 are enabled. The header includes a
timestamp as well as a parent process ID and process ID.

Example

In the following example of trace settings, tracing has been enabled, the name of the log file is
odbctrace.out, the library for tracing is ivtrc28.so, the maximum size of the log file is 51200
KB, and the maximum number of log files is 8. Timestamp and other information is included in
odbctrace.out.

Trace=1
TraceFile=ODBCHOME/lib/odbctrace.out
TraceDll=ODBCHOME/lib/ivtrc28.so
ODBCTraceMaxFileSize=51200
ODBCTraceMaxNumFiles=8
TraceOptions=3

The Test Loading Tool

Before using the test loading tool, be sure that your environment variables are set correctly. See "Environment
Variable" for details about environment variables.

The ivtestlib (32-bit drivers) and ddtestlib (64-bit drivers) test loading tools are provided to test load drivers and
help diagnose configuration problems in the UNIX, Linux, and macOS environments, such as environment
variables not correctly set or missing database client components.This tool is installed in the /bin subdirectory
in the product installation directory. It attempts to load a specified ODBC driver and prints out all available error
information if the load fails.

For example, if the drivers are installed in /opt/odbc/lib, the following command attempts to load the 32-bit
driver on Solaris, where xx represents the version number of the driver:

ivtestlib /opt/odbc/lib/ivoraxx.so

Note: On the HP-UX version, the full path to the driver must be specified for the tool. For other platforms, the
full path is not required.

If the load is successful, the tool returns a success message along with the version string of the driver. If the
driver cannot be loaded, the tool returns an error message explaining why.

See "Version String Information" for details about version strings.

See also
Environment Variables on page 56
Version String Information on page 43

167Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Diagnostic Tools

ODBC Test

On Windows, Microsoft
®

 ships with its ODBC SDK an ODBC-enabled application, named ODBC Test, that you
can use to test ODBC drivers and the ODBC Driver Manager. ODBC 3.52 includes both ANSI and
Unicode-enabled versions of ODBC Test.

To use ODBC Test, you must understand the ODBC API, the C language, and SQL. For more information
about ODBC Test, refer to the Microsoft ODBC SDK Guide.

iODBC Demo and iODBC Test

On macOS, the iODBC Driver Manager includes two sample applications, iODBC Demo and iODBC Test, that
you can use to test ODBC drivers and the ODBC Driver Manager. iODBC Demo supports a graphical user
interface to run tests, while iODBC Test employs a command-line interface. Both applications allow you to
execute SQL statements against your environment, providing a quick means to test your connections,
configurations, and setup. ANSI and Unicode-enabled versions of both applications are installed with the Driver
Manager.

The Example Application

Progress DataDirect provides a simple C application, named example, that is useful for:

• Executing any type of SQL statement

• Testing database connections

• Testing SQL statements

• Verifying your database environment

The example application is installed in the /samples/example subdirectory in the product installation directory.
Refer to example.txt or example64.txt in the example directory for an explanation of how to build and
use this application.

Other Tools

The Progress DataDirect Support Web site provides other diagnostic tools that you can download to assist you
with troubleshooting.These tools are not shipped with the product. Refer to the Progress DataDirect Web page:

https://www.progress.com/support/evaluation/download-resources/download-tools

Progress DataDirect also provides a knowledgebase that is useful in troubleshooting problems. Refer to the
Progress DataDirect Knowledgebase page:

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2168

Chapter 6: Troubleshooting

https://www.progress.com/support/evaluation/download-resources/download-tools

http://progresscustomersupport-survey.force.com/ConnectKB

Error Messages
Error messages can be generated from:

• ODBC driver

• Database system

• ODBC driver manager

An error reported on an ODBC driver has the following format:

[vendor] [ODBC_component] message

where ODBC_component is the component in which the error occurred. For example, an error message from
the Progress DataDirect for ODBC for Oracle Wire Protocol driver would look like this:

[DataDirect] [ODBC Oracle Wire Protocol Driver] Invalid precision specified.

If you receive this type of error, check the last ODBC call made by your application for possible problems or
contact your ODBC application vendor.

An error that occurs in the data source includes the data store name, in the following format:

[vendor] [ODBC_component] [data_store] message

With this type of message, ODBC_component is the component that received the error specified by the data
store. For example, you may receive the following message from an Oracle database:

[DataDirect] [ODBC Oracle Wire Protocol Driver] [Oracle] ORA-0919: specified length too
 long for CHAR column

This type of error is generated by the database system. Check your database system documentation for more
information or consult your database administrator.

On UNIX and Linux the Driver Manager is provided by Progress DataDirect. For example, an error from the
DataDirect Driver Manager might look like this:

[DataDirect][ODBC lib] String data code page conversion failed.

UNIX, Linux, and macOS error handling follows the X/Open XPG3 messaging catalog system. Localized error
messages are stored in the subdirectory:

locale/localized_territory_directory/LC_MESSAGES

where localized_territory_directory depends on your language.

For instance, German localization files are stored in locale/de/LC_MESSAGES, where de is the locale for
German.

If localized error messages are not available for your locale, then they will contain message numbers instead
of text. For example:

[DataDirect] [ODBC 20101 driver] 30040

169Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Error Messages

http://progresscustomersupport-survey.force.com/ConnectKB

On Windows, the Microsoft Driver Manager is a DLL that establishes connections with drivers, submits requests
to drivers, and returns results to applications. An error that occurs in the Driver Manager has the following
format:

[vendor] [ODBC XXX] message

For example, an error from the Microsoft Driver Manager might look like this:

[Microsoft] [ODBC Driver Manager] Driver does not support this function

If you receive this type of error, consult the Programmer’s Reference for the Microsoft ODBC Software
Development Kit available from Microsoft.

On macOS, the iODBC Driver Manager establishes connections with drivers, submits requests to drivers, and
returns results to applications. An error that occurs in the Driver Manager has the following format:

[vendor] [Driver Manager] message

For example, an error from the Microsoft Driver Manager might look like this:

[iODBC] [Driver Manager] Specified driver could not be loaded

If you receive this type of error, consult the iODBC documentation at http://www.iodbc.org/.

Troubleshooting
If you are having an issue while using your driver, first determine the type of issue that you are encountering:

• Setup/connection

• Performance

• Interoperability (ODBC application, ODBC driver, ODBC Driver Manager, or data source)

• Out-of-Memory

This chapter describes these three types of issues, provides some typical causes of the issues, lists some
diagnostic tools that are useful to troubleshoot the issues, and, in some cases, explains possible actions you
can take to resolve the issues.

Setup/Connection Issues

You are experiencing a setup/connection issue if you are encountering an error or hang while you are trying
to make a database connection with the ODBC driver or are trying to configure the ODBC driver.

Some common errors that are returned by the ODBC driver if you are experiencing a setup/connection issue
include:

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2170

Chapter 6: Troubleshooting

http://www.iodbc.org/

• Specified driver could not be loaded.

• Data source name not found and no default driver specified.

• Cannot open shared library: libodbc.so.

• Unable to connect to destination.

• Invalid username/password; logon denied.

Troubleshooting the Issue
Some common reasons that setup/connection issues occur are:

• On Windows, UNIX, and Linux, the library path environment variable is not set correctly.

HP-UX ONLY:

• When setting the library path environment variable on HP-UX operating systems, specifying the parent
directory is not required.

• You also must set the LD_PRELOAD environment variable to the fully qualified path of the libjvm.so[sl].

The library path environment variable is:

32-bit Drivers

• PATH on Windows

• LD_LIBRARY_PATH on Solaris, Linux and HP-UX Itanium

• SHLIB_PATH on HP-UX PA_RISC

• LIBPATH on AIX

64-bit Drivers

• PATH on Windows

• LD_LIBRARY_PATH on Solaris, HP-UX Itanium, and Linux

• LIBPATH on AIX

• The database and/or listener are not started.

• The ODBCINI environment variable is not set correctly for the ODBC drivers on UNIX, Linux, or macOS.

• The ODBC driver’s connection attributes are not set correctly in the system information file on UNIX, Linux,
and macOS. See "Data Source Configuration on UNIX/Linux" or "Data Source Configuration for macOS"
for more information. For example, the host name or port number are not correctly configured. See
"Connection Option Descriptions" for a list of connection string attributes that are required for each driver
to connect properly to the underlying database.

See "The Test Loading Tool" for information about a helpful diagnostic tool.

See also
Data Source Configuration on UNIX/Linux on page 58
Data Source Configuration on macOS on page 66
Connection Option Descriptions on page 175
Configuring the Product on macOS on page 65

171Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Troubleshooting

The Test Loading Tool on page 167

Interoperability Issues

Interoperability issues can occur with a working ODBC application in any of the following ODBC components:
ODBC application, ODBC driver, ODBC Driver Manager, and/or data source. See "What Is ODBC?" for more
information about ODBC components.

For example, any of the following problems may occur because of an interoperability issue:

• SQL statements may fail to execute.

• Data may be returned/updated/deleted/inserted incorrectly.

• A hang or core dump may occur.

See also
What Is ODBC? on page 31

Troubleshooting the Issue
Isolate the component in which the issue is occurring. Is it an ODBC application, an ODBC driver, an ODBC
Driver Manager, or a data source issue?

To troubleshoot the issue:

1. Test to see if your ODBC application is the source of the problem. To do this, replace your working ODBC
application with a more simple application. If you can reproduce the issue, you know your ODBC application
is not the cause.

On UNIX and Linux, you can use the example application that is shipped with your driver. See "The example
Application" for details.

On Windows, you can use ODBC Test, which is part of the Microsoft ODBC SDK, or the example application
that is shipped with your driver. See "ODBC Test" and "The example Application" for details.

On macOS, you can use iODBC Demo or iODBC Test, which are installed with the iODBC Administrator,
or the example application that is shipped with your driver. See "iODBC Demo and iODBC Test" and "The
example Application" for details.

2. Test to see if the data source is the source of the problem. To do this, use the native database tools that
are provided by your database vendor.

3. If neither the ODBC application nor the data source is the source of your problem, troubleshoot the ODBC
driver and the ODBC Driver Manager.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2172

Chapter 6: Troubleshooting

In this case, we recommend that you create an ODBC trace log to provide to Technical Support. See "ODBC
Trace" for details.

See also
ODBC Test on page 168
The Example Application on page 168
iODBC Demo and iODBC Test on page 168
ODBC Trace on page 163

Performance Issues

Developing performance-oriented ODBC applications is not an easy task.You must be willing to change your
application and test it to see if your changes helped performance. Microsoft’s ODBC Programmer’s Reference
does not provide information about system performance. In addition, ODBC drivers and the ODBC Driver
Manager do not return warnings when applications run inefficiently.

Some general guidelines for developing performance-oriented ODBC applications include:

• Use catalog functions appropriately.

• Retrieve only required data.

• Select functions that optimize performance.

• Manage connections and updates.

See "Designing ODBC Applications for Performance Optimization" for complete information.

See also
Designing ODBC Applications for Performance Optimization on page 295

173Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Troubleshooting

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2174

Chapter 6: Troubleshooting

7
Connection Option Descriptions

The following connection option descriptions are listed alphabetically by the GUI name that appears on the
driver Setup dialog box. The connection string attribute name, along with its short name, is listed immediately
underneath the GUI name.

In most cases, the GUI name and the attribute name are the same; however, some exceptions exist. If you
need to look up an option by its connection string attribute name, please refer to the alphabetical table of
connection string attribute names.

Also, a few connection string attributes, for example, Password, do not have equivalent options that appear
on the GUI. They are in the list of descriptions alphabetically by their attribute names.

The following table lists the connection string attributes supported by the Oracle Wire Protocol driver.

Table 11: Oracle Wire Protocol Attribute Names

DefaultAttribute (Short Name)

NoneAccountingInfo (AI)

NoneAction (ACT)

NoneAlternateServers (ASRV)

latestAllowedOpenSSLVersions (AOV)

NoneApplicationName (AN)

1 (Enabled)ApplicationUsingThreads (AUT)

60000ArraySize (AS)

175Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

DefaultAttribute (Short Name)

1 (Encrypt Password)AuthenticationMethod (AM)

32BulkBinaryThreshold (BBT) (Windows, UNIX, and Linux only)

-1BulkCharacterThreshold (BCT) (Windows, UNIX, and Linux only)

1024BulkLoadBatchSize (BLBS) (Windows, UNIX, and Linux only)

NoneBulkLoadFieldDelimiter (BLFD) (Windows, UNIX, and Linux only)

0BulkLoadOptions (BLO) (Windows, UNIX, and Linux only)

NoneBulkLoadRecordDelimiter (BLRD) (Windows, UNIX, and Linux only)

32CachedCursorLimit (CCL)

0CachedDescriptionLimit (CDL)

1 (Enabled)CatalogIncludesSynonyms (CIS)

0 (Disabled)CatalogOptions (CO)

NoneClientHostName (CHN)

NoneClientID (CID)

NoneClientUser (CU)

0 (Disabled)ConnectionReset (CR) (Windows, UNIX, and Linux only)

0ConnectionRetryCount (CRC)

3ConnectionRetryDelay (CRD)

NoneCredentialsWalletEntry (CWE)

NoneCredentialsWalletPassword (CWPWD)

NoneCredentialsWalletPath (CWPATH)

TLSv1.2,TLSv1.1,TLSv1CryptoProtocolVersion (CPV)

Empty stringCryptoLibName (CLN)

1 (Accepted)DataIntegrityLevel (DIL)

MD5,SHA1,SHA256,SHA384,SHA512DataIntegrityTypes (DIT)

NoneDataSourceName (DSN)

1024DefaultLongDataBuffLen (DLDBL)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2176

Chapter 7: Connection Option Descriptions

DefaultAttribute (Short Name)

0 (Disabled)DescribeAtPrepare (DAP)

NoneDescription (n/a)

NoneEditionName (EN)

0 (Disabled)EnableBulkLoad (EBL) (Windows, UNIX, and Linux only)

0 (Disabled)EnableDescribeParam (EDP)

NoneEnableNcharSupport (ENS)

Note: EnableNcharSupport has been deprecated.

1 (Enabled)EnableScrollableCursors (ESC)

0 (Disabled)EnableServerResultCache (ESRC)

0 (Disabled)EnableStaticCursorsForLongData (ESCLD)

NoneEnableTimestampwithTimezone (ETWT)

Note: EnableTimestampwithTimezone has been deprecated.

1 (Accepted)EncryptionLevel (EL)

0 (No Encryption)EncryptionMethod (EM)

No encryption methods are specified.
The driver sends a list of all of the
encryption methods to the Oracle
server.

EncryptionTypes (ET)

0 (Non-Atomic)FailoverGranularity (FG)

0 (Connection)FailoverMode (FM)

0 (Disabled)FailoverPreconnect (FP)

0 (Disabled)FetchTSWTZasTimestamp (FTSWTZAT)

nativeGSSClient (GSSC)

NoneHostName (HOST)

NoneHostNameInCertificate (HNIC)

4 (ISO 8559-1 Latin-1)IANAAppCodePage (IACP) (UNIX, Linux, macOS only)

177Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

DefaultAttribute (Short Name)

NoneImpersonateUser (IU)

NoneInitializationString (IS)

0 (Disabled)KeepAlive (KA)

NoneKeyPassword (KP)

NoneKeystore (KS)

NoneKeystorePassword (KSP)

NoneLDAPDistinguishedName (LDN) (Windows, UNIX, and Linux only)

0LoadBalanceTimeout (LBT) (Windows, UNIX, and Linux only)

0 (Disabled)LoadBalancing (LB)

4000LOBPrefetchSize (LPS)

"" (Empty String)LocalTimezoneOffset (LTZO)

-1LockTimeout (LTO)

15LoginTimeout (LT)

NoneLogonID (UID)

100MaxPoolSize (MXPS) (Windows, UNIX, and Linux only)

0MinPoolSize (MNPS) (Windows, UNIX, and Linux only)

NoneModule (MOD)

NonePassword (PWD)

0 (Disabled)Pooling (POOL) (Windows, UNIX, and Linux only)

NonePortNumber (PORT)

/dev/randomPRNGSeedFile (PSF) (UNIX, Linux, macOS only)

0 (File)PRNGSeedSource (PSS) (UNIX, Linux, macOS only)

0 (Disabled)ProcedureRetResults (PRR)

NoneProgramID (PID)

Empty stringProxyHost (PXHN) (Windows, UNIX, and Linux only)

0 (NONE)ProxyMode (PXM) (Windows, UNIX, and Linux only)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2178

Chapter 7: Connection Option Descriptions

DefaultAttribute (Short Name)

Empty stringProxyPassword (PXPW) (Windows, UNIX, and Linux only)

0ProxyPort (PXPT) (Windows, UNIX, and Linux only)

Empty stringProxyUser (PXU) (Windows, UNIX, and Linux only)

0QueryTimeout (QT)

0 (Ignore Errors)ReportCodepageConversionErrors (RCCE)

0 (Disabled)ReportRecycleBin (RRB)

16384SDUSize (SDU)

NoneServerName (SRVR)

0 (Server Default)ServerType (ST)

None. If no value is specified for either
the SID, Service Name, or TNSNames
option, the driver attempts to connect
to the ORCL SID by default.

ServiceName (SN)

None. If no value is specified for either
the SID, Service Name, or TNSNames
option, the driver attempts to connect
to the ORCL SID by default.

SID (SID)

Empty stringSSLLibName (SLN)

0 (Disabled)SupportBinaryXML (SBX)

0 (Oracle Version Specific)TimestampEscapeMapping (TEM)

None. If no value is specified for either
the SID, Service Name, or TNSNames
option, the driver attempts to connect
to the ORCL SID by default.

TNSNamesFile (TNF)

NoneTruststore (TS)

NoneTruststorePassword (TSP)

1 (Enabled)UseCurrentSchema (UCS)

179Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

DefaultAttribute (Short Name)

1 (Enabled)ValidateServerCertificate (VSC)

2WireProtocolMode (WPM)

For details, see the following topics:

• Accounting Info

• Action

• AllowedOpenSSLVersions

• Alternate Servers

• Application Name

• Application Using Threads

• Array Size

• Authentication Method

• Batch Size

• Bulk Binary Threshold

• Bulk Character Threshold

• Bulk Options

• Cached Cursor Limit

• Cached Description Limit

• Catalog Functions Include Synonyms

• Catalog Options

• Client Host Name

• Client ID

• Client User

• Connection Pooling

• Connection Reset

• Connection Retry Count

• Connection Retry Delay

• Credentials Wallet Entry

• Credentials Wallet Path

• Crypto Protocol Version

• CryptoLibName

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2180

Chapter 7: Connection Option Descriptions

• Data Integrity Level

• Data Integrity Types

• Data Source Name

• Default Buffer Size for Long/LOB Columns (in Kb)

• Describe at Prepare

• Description

• Edition Name

• Enable Bulk Load

• Enable N-CHAR Support

• Enable Scrollable Cursors

• Enable Server Result Cache

• Enable SQLDescribeParam

• Enable Static Cursors for Long Data

• Enable Timestamp with Timezone

• Encryption Level

• Encryption Method

• Encryption Types

• Failover Granularity

• Failover Mode

• Failover Preconnect

• Fetch TSWTZ as Timestamp

• Field Delimiter

• GSS Client Library

• Host

• Host Name In Certificate

• IANAAppCodePage

• Impersonate User

• Initialization String

• Key Password

• Key Store

• Key Store Password

• LDAP Distinguished Name

• Load Balancing

181Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

• LoadBalance Timeout

• LOB Prefetch Size

• Local Timezone Offset

• Lock Timeout

• Login Timeout

• Max Pool Size

• Min Pool Size

• Module

• Password

• Port Number

• Proxy Host

• Proxy Mode

• Proxy Password

• Proxy Port

• Proxy User

• PRNGSeedFile

• PRNGSeedSource

• Procedure Returns Results

• Program ID

• Query Timeout

• Record Delimiter

• Report Codepage Conversion Errors

• Report Recycle Bin

• SDU Size

• Server Name

• Server Process Type

• Service Name

• SID

• SSLLibName

• Support Binary XML

• TCP Keep Alive

• Timestamp Escape Mapping

• TNSNames File

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2182

Chapter 7: Connection Option Descriptions

• Trust Store

• Trust Store Password

• Use Current Schema for SQLProcedures

• User Name

• Validate Server Certificate

• Wallet Password

• Wire Protocol Mode

Accounting Info

Attribute
AccountingInfo (AI)

Purpose
Accounting information to be stored in the database.This value sets the CLIENT_INFO value of the V$SESSION
table on the server. This value is used by the client information feature.

Valid Values
string

where:

string

is the accounting information.

Notes

• This connection option can affect performance.

Default
None

GUI Tab
Client Monitoring tab

See also
Performance Considerations on page 115

183Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Accounting Info

Action

Attribute
Action (ACT)

Purpose
The current action (Select, Insert, Update, or Delete, for example) within the current module. This value sets
the ACTION column of the V$SESSION table on the server.This value is used by the client information feature.

This option only applies to connections to Oracle 10g R2 and higher database servers.

Valid Values
string

where:

string

is the current action.

Notes

• You can also specify this information using the Oracle DBMS_APPLICATION_INFO.SET_ACTION procedure
or the DBMS_APPLICATION_INFO.SET_MODULE procedure.

• This connection option can affect performance.

Default
None

GUI Tab
Client Monitoring tab

See also
Performance Considerations on page 115

AllowedOpenSSLVersions

Attribute
AllowedOpenSSLVersions (AOV)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2184

Chapter 7: Connection Option Descriptions

Purpose

Important: Version 1.0.2 of the OpenSSL library has reached the end of its product life cycle and is no longer
receiving security updates. Best security practices dictate that you use the latest version of the library.

Determines which version of the OpenSSL library file the driver uses for data encryption. Although the latest
version of the OpenSSL library is the most secure, some characteristics of the library can cause connections
to certain databases to fail. This option allows you to continue using older versions of the OpenSSL library
while you transition your environment to support the latest version.

Valid Values
latest | openssl_version_number[[,openssl_version_number]...]

where:

openssl_version_number

is the version number for the OpenSSL library file to be loaded by the driver, for example, 1.0.2.
When more than one version is specified, the driver will first attempt to load the first version listed.
If the driver is unable to locate and load this file, it will attempt to load the next version in the value.
The driver currently supports versions 1.1.1 and 1.0.2. Refer to the installed readme for latest
supported versions.

Behavior
If set to latest, the driver loads the latest installed version of the OpenSSL library file provided by Progress.

If set to openssl_version_number, the driver loads the specified version of the OpenSSL library file. This
value is used to specify a version other than the latest.

Notes

• This option is ignored if OpenSSL library files are specified using the CryptoLibName and SSLLibName
options.

• This option works only with OpenSSL library files provided by Progress and user supplied OpenSSL library
files that match Progress's naming convention and installation location.

• This option works only for installations using the default directory structure.

• Consult your database administrator concerning the security settings of your server.

Default
1.1.1,1.0.2

GUI Tab
The value for this option is specified as an option-value pair in the Extended Options field on the Advanced
tab. For example:

AllowedOpenSSLVersions=1.0.2

See also

• Advanced Tab on page 80

185Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

AllowedOpenSSLVersions

Alternate Servers

Attribute
AlternateServers (ASRV)

Purpose
A list of alternate database servers to which the driver tries to connect if the primary database server is
unavailable. Specifying a value for this option enables connection failover for the driver. The value you specify
must be in the form of a string that defines the physical location of each alternate server. All of the other required
connection information for each alternate server is the same as what is defined for the primary server connection.

Valid Values

(HostName=hostvalue:PortNumber=portvalue:{SID=sidvalue | ServiceName=servicevalue}[,
 . . .])

You must specify the host name, port number, and either the SID or service name of each alternate server.

Example
The following Alternate Servers value defines two alternate database servers for connection failover:

(HostName=AccountingOracleServer:PortNumber=1521:
SID=Accounting,HostName=255.201.11.24:PortNumber=1522:
ServiceName=ABackup.NA.MyCompany)

Default
None

GUI tab
Failover tab

Application Name

Attribute
ApplicationName (AN)

Purpose
The name of the application to be stored in the database. This value sets the dbms_session value in the
database and the PROGRAM value of the V$SESSION table on the server. This value is used by the client
information feature.

Valid Values
string

where:

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2186

Chapter 7: Connection Option Descriptions

string

is the name of the application.

Notes

• This connection option can affect performance.

Default
None

GUI Tab
Client Monitoring tab

See also
Performance Considerations on page 115

Application Using Threads

Attribute
ApplicationUsingThreads (AUT)

Purpose
Determines whether the driver works with applications using multiple ODBC threads.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver works with single-threaded and multi-threaded applications.

If set to 0 (Disabled), the driver does not work with multi-threaded applications. If using the driver with
single-threaded applications, this value avoids additional processing required for ODBC thread-safety standards.

Notes

• This connection option can affect performance.

Default
1 (Enabled)

GUI tab
Advanced tab

See also
Performance Considerations on page 115

187Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Application Using Threads

Array Size

Attribute
ArraySize (AS)

Purpose
The number of bytes the driver can fetch in a single network round trip. Larger values increase throughput by
reducing the number of times the driver fetches data across the network. Smaller values increase response
time, as there is less of a delay waiting for the server to transmit data.

Valid Values
An integer from 1 to 4,294,967,296 (4 GB)

The value 1 does not define the number of bytes but, instead, causes the driver to allocate space for exactly
one row of data.

Notes

• This connection option can affect performance.

• The setting of the Array Size property can be overridden by specifying the number of rows to fetch using
the SQL_ATTR_ROW_ARRAY_SIZE statement attribute. When issuing the statement attribute, the driver
calculates the internal buffer size for a fetch by multiplying the number of rows specified by the row size
reported in the server metadata. Therefore, specifying large values may improve throughput, but it does so
at the expense of increased demands on memory.

Default
60000

GUI Tab
Performance tab

See also
Performance Considerations on page 115

Authentication Method

Attribute
AuthenticationMethod (AM)

Purpose
Specifies the method the driver uses to authenticate the user to the server when a connection is established.
If the specified authentication method is not supported by the database server, the connection fails and the
driver generates an error.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2188

Chapter 7: Connection Option Descriptions

Valid Values
1 | 3 | 4 | 5 | 6 | 11 | 12 | 14

Behavior
If set to 1 (Encrypt Password), the driver sends the user ID in clear text and an encrypted password to the
server for authentication.

If set to 3 (Client Authentication), the driver uses client authentication when establishing a connection. The
database server relies on the client to authenticate the user and does not provide additional authentication.

If set to 4 (Kerberos Authentication), the driver uses Kerberos authentication. This method supports both
Windows Active Directory Kerberos and MIT Kerberos environments.

When set to 5 (Kerberos with UID & PWD), the driver uses both Kerberos authentication and user ID and
password authentication. The driver first authenticates the user using Kerberos. If a user ID and password are
specified, the driver reauthenticates using the user name and password supplied. An error is generated if a
user ID and password are not specified.

If set to 6 (NTLM), the driver uses NTLMv1 authentication for Windows clients.

If set to 11 (SSL), the driver uses SSL certificate information to authenticate the client with the server when
using Oracle Wallet. The User Name and Password options should not be specified. See "Oracle Wallet SSL
Authentication" for additional requirements.

If set to 12 (SSL with UID & Password), the driver uses user ID, password and SSL authentication to connect
with the server when using Oracle Wallet. See "Oracle Wallet SSL Authentication" for additional requirements.

If set to 14 (Wallet UID & PWD), the driver authenticates to the server using a user ID and password retrieved
from Oracle Wallet. See "Oracle Wallet Password Store" for additional requirements.

Notes

• When AuthenticationMethod is set to 14 (Wallet UID & PWD), specifying values for the User Name (LogonID)
or Password (Password) options returns a warning and the values are ignored.

Default
1 (Encrypt Password)

GUI tab
Security tab

See Also

• User Name on page 259

• Password on page 236

• Oracle Wallet SSL Authentication on page 135

Batch Size

Supported on Windows, UNIX, and Linux only.

189Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Batch Size

Attribute
BulkLoadBatchSize (BLBS)

Purpose
The number of rows that the driver sends to the database at a time during bulk operations. This value applies
to all methods of bulk loading.

Valid Values
0 | x

where

x

is a positive integer that specifies the number of rows to be sent.

Default
1024

GUI Tab
Bulk tab

Bulk Binary Threshold

Supported on Windows, UNIX, and Linux only.

Attribute
BulkBinaryThreshold (BBT)

Purpose
The maximum size, in KB, of binary data that is exported to the bulk data file.

Valid Values
-1 | 0 | x

where

x

is an integer that specifies the number of KB.

Behavior
If set to -1, all binary data, regardless of size, is written to the bulk data file, not to an external file.

If set to 0, all binary data, regardless of size, is written to an external file, not the bulk data file. A reference to
the external file is written to the bulk data file.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2190

Chapter 7: Connection Option Descriptions

If set to x, any binary data exceeding this specified number of KB is written to an external file, not the bulk data
file. A reference to the external file is written to the bulk data file.

Default
32

GUI Tab
Bulk tab

Bulk Character Threshold

Supported on Windows, UNIX, and Linux only.

Attribute
BulkCharacterThreshold (BCT)

Purpose
The maximum size, in KB, of character data that is exported to the bulk data file.

Valid Values
-1 | 0 | x

where

x

is an integer that specifies the number of KB.

Behavior
If set to -1, all character data, regardless of size, is written to the bulk data file, not to an external file.

If set to 0, all character data regardless of size, is written to an external file, not the bulk data file. A reference
to the external file is written to the bulk data file.

If set to x, any character data exceeding this specified number of KB is written to an external file, not the bulk
data file. A reference to the external file is written to the bulk data file.

Default
-1

GUI Tab
Bulk tab

191Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Bulk Character Threshold

Bulk Options

Supported on Windows, UNIX, and Linux only.

Attribute
BulkLoadOptions (BLO)

Purpose
Toggles options for the bulk load process.

This option only applies to connections to Oracle 11g R2 and higher database servers.

Valid Values
0 | x

where:

x

is a positive integer representing the cumulative total of the Bulk Options values.

Behavior
If set to 0, none of the options for bulk load are enabled.

If set to x, the values represented by x are enabled.

Currently, the only bulk load option available is:

No Index Errors - The driver stops a bulk load operation when a value that would cause an index to be invalidated
is loaded. For example, if a value is loaded that violates a unique or non-null constraint, the driver stops the
bulk load operation and discards all data being loaded, including any data that was loaded prior to the problem
value. If not enabled, the bulk load operation continues even if a value that would cause an index to be invalidated
is loaded. Value=128.

Notes

• The cumulative value of the options is only used in a connection string with the connection string attribute,
BulkLoadOptions. On the Bulk tab of the driver Setup dialog, the individual options are enabled by selecting
the appropriate check box.

Default
0 (disabled)

GUI Tab
Bulk tab

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2192

Chapter 7: Connection Option Descriptions

Cached Cursor Limit

Attribute
CachedCursorLimit (CCL)

Purpose
Specifies the number of Oracle Cursor Identifiers that the driver stores in cache. A Cursor Identifier is needed
for each concurrent open Select statement. When a Select statement is closed, the driver stores the identifier
in its cache, up to the limit specified, rather than closing the Cursor Identifier. When a new Cursor Identifier is
needed, the driver takes one from its cache, if one is available. Cached Cursor Identifiers are closed when the
connection is closed.

Valid Values
An integer from 0 to 65535

Default
32

GUI Tab
Performance tab

See also
Performance Considerations on page 115

Cached Description Limit

Attribute
CachedDescriptionLimit (CDL)

Purpose
Specifies the number of descriptions that the driver saves for Select statements. These descriptions include
the number of columns, data type, length, and scale for each column. The matching is done by an exact-text
match through the FROM clause.

Valid Values
An integer from 0 to 65535

Notes

• If the Select statement contains a Union or a nested Select, the description is not cached.

193Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Cached Cursor Limit

Default
0

GUI Tab
Performance tab

See also
Performance Considerations on page 115

Catalog Functions Include Synonyms

Attribute
CatalogIncludesSynonyms (CIS)

Purpose
Determines whether synonyms are included in calls to SQLProcedures, SQLStatistics, and
SQLProcedureColumns.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), synonyms are included in calls to SQLProcedures, SQLStatistics, and
SQLProcedureColumns.

If set to 0 (Disabled), synonyms are excluded (a non-standard behavior) and performance is thereby improved.

Notes

• This connection option can affect performance.

Default
1 (Enabled)

GUI Tab
Performance tab

See also
Performance Considerations on page 115

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2194

Chapter 7: Connection Option Descriptions

Catalog Options

Attribute
CatalogOptions (CO)

Purpose
Determines whether SQL_NULL_DATA is returned for the result columns REMARKS and COLUMN_DEF.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the result column REMARKS (for the catalog functions SQLTables and SQLColumns)
and the result column COLUMN_DEF (for the catalog function SQLColumns) return actual values. Enabling
this option reduces the performance of your catalog (SQLColumns and SQLTables) queries.

If set to 0 (Disabled), SQL_NULL_DATA is returned for the result columns REMARKS and COLUMN_DEF.

Notes

• This connection option can affect performance.

Default
0 (Disabled)

GUI Tab
Advanced tab

See also
Performance Considerations on page 115

Client Host Name

Attribute
ClientHostName (CHN)

Purpose
The host name of the client machine to be stored in the database. This value sets the MACHINE value in the
V$SESSION table on the server. This value is used by the client information feature.

Valid Values
string

195Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Catalog Options

where:

string

is the host name of the client machine.

If a value for this option is not specified, the driver uses the current machine name and IP address in the
following format:

machine_name/IP_address

Notes

• This connection option can affect performance.

Default
None

GUI Tab
Client Monitoring tab

See also
Performance Considerations on page 115

Client ID

Attribute
ClientID (CID)

Purpose
Additional information about the client to be stored in the database. This value sets the CLIENT_IDENTIFIER
value in the V$SESSION table on the server. This value is used by the client information feature.

This option only applies to connections to Oracle 10g R2 and higher database servers.

Valid Values
string

where:

string

is additional information about the client.

Notes

• You can also specify this information using the Oracle DBMS_SESSION.SETIDENTIFIER procedure or
the DBMS_APPLICATION_INFO.SET_CLIENT_INFO procedure.

• This connection option can affect performance.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2196

Chapter 7: Connection Option Descriptions

Default
None

GUI Tab
Client Monitoring tab

See also
Performance Considerations on page 115

Client User

Attribute
ClientUser (CU)

Purpose
The user ID to be stored in the database. This value sets the OSUSER value in the V$SESSION table on the
server. This value is used by the client information feature.

Valid Values
-1 | string

where:

string

is a valid user ID.

Behavior
When set to -1, the driver uses the userid of the user that is currently logged onto the client.

If a value for this option is not specified, the driver uses name of the user that is currently logged into the OS.

Notes

• This connection option can affect performance.

Default
None

GUI Tab
Client Monitoring tab

See also
Performance Considerations on page 115

197Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Client User

Connection Pooling

Supported on Windows, UNIX, and Linux only.

Attribute
Pooling (POOL)

Purpose
Specifies whether to use the driver’s connection pooling.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver uses connection pooling.

If set to 0 (Disabled), the driver does not use connection pooling.

Notes

• The application must be thread-enabled to use connection pooling.

• This connection option can affect performance.

Default
0 (Disabled)

GUI Tab
Pooling tab

See also
Performance Considerations on page 115

Connection Reset

Supported on Windows, UNIX, and Linux only.

Attribute
ConnectionReset (CR)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2198

Chapter 7: Connection Option Descriptions

Purpose
Determines whether the state of connections that are removed from the connection pool for reuse by the
application is reset to the initial configuration of the connection.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the state of connections removed from the connection pool for reuse by an application is
reset to the initial configuration of the connection. Resetting the state can negatively impact performance
because additional commands must be sent over the network to the server to reset the state of the connection.

If set to 0 (Disabled), the state of connections is not reset.

Notes

• This connection option can affect performance.

Default
0 (Disabled)

GUI Tab
Pooling tab

See also
Performance Considerations on page 115

Connection Retry Count

Attribute
ConnectionRetryCount (CRC)

Purpose
The number of times the driver retries connection attempts to the primary database server, and if specified,
alternate servers until a successful connection is established.

This option and the Connection Retry Delay connection option, which specifies the wait interval between
attempts, can be used in conjunction with failover.

Valid Values
0 | x

where:

x

is a positive integer from 1 to 65535.

199Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Connection Retry Count

Behavior
If set to 0, the driver does not try to connect after the initial unsuccessful attempt.

If set to x, the driver retries connection attempts the specified number of times. If a connection is not established
during the retry attempts, the driver returns an error that is generated by the last server to which it tried to
connect.

Default
0

GUI Tab
Failover tab

Connection Retry Delay

Attribute
ConnectionRetryDelay (CRD)

Purpose
Specifies the number of seconds the driver waits between connection retry attempts when Connection Retry
Count is set to a positive integer.

This option and the Connection Retry Count connection option can be used in conjunction with failover.

Valid Values
0 | x

where

x

is a positive integer from 1 to 65535.

Behavior
If set to 0, there is no delay between retries.

If set to x, the driver waits the specified number of seconds between connection retry attempts.

Default
3

GUI Tab
Failover tab

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2200

Chapter 7: Connection Option Descriptions

Credentials Wallet Entry

Attribute
CredentialsWalletEntry (CWE)

Purpose
Specifies the string value used to identify database credential information stored in an Oracle Wallet. When
AuthenticationMethod=14 (Wallet UID & PWD), the driver retrieves the user ID and password associated
with the specified value from the wallet and uses them to authenticate to the server. This value provides a
method for the correct user ID and password to be retrieved when there are multiple pairs in a wallet.

See "Oracle Wallet Password Store" for a complete list of options and settings required for the Oracle Wallet
Password Store feature.

Valid Values
wallet_entry_string

where:

wallet_entry_string

the string used to identify sets of database credential information stored in a wallet. This value is
defined when creating or modifying credentials stored in a wallet and is typically a net service name,
Oracle service name, or host:port:SID string, but can be any value specified by the user creating
the credentials entry.

Notes

• When AuthenticationMethod=14 (Wallet UID & PWD), the driver retrieves user ID and passwords from
the Oracle Wallet file specified by the Credentials Wallet Path (CredentialsWalletPath) option.

Default
None

GUI Tab
Security tab

See Also

• Authentication Method on page 188

• Wallet Password on page 260

• Oracle Wallet Password Store on page 136

201Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Credentials Wallet Entry

Credentials Wallet Path

Attribute
CredentialsWalletPath (CWPATH)

Purpose
Specifies the fully-qualified path to the Oracle Wallet file in which your database credential information is stored.
When AuthenticationMethod=14 (Wallet UID & PWD), the driver retrieves the database user name and
password from this file.

See "Oracle Wallet Password Store" for a complete list of options and settings required for the Oracle Wallet
Password Store feature.

Valid Values
wallet_file_path

where:

wallet_file_path

the fully-qualified path to the Oracle Wallet file in which your database credential information is stored.

Notes

• An Oracle Wallet can contain multiple User ID password pairs. To ensure the driver retrieves the correct
credentials, you must specify the identifier string for the credentials using the Credentials Wallet Entry
(CredentialsWalletEntry) option.

• If you are using an ewallet.p12 file for your wallet, specify the Oracle Wallet file password using the
Wallet Password (CredentialsWalletPassword) option.

Default
None

GUI Tab
Security tab

See Also

• Authentication Method on page 188

• Wallet Password on page 260

• Oracle Wallet Password Store on page 136

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2202

Chapter 7: Connection Option Descriptions

Crypto Protocol Version

Attribute
CryptoProtocolVersion (CPV)

Purpose
Specifies a comma-separated list of the cryptographic protocols to use when SSL is enabled using the Encryption
Method connection option.When multiple protocols are specified, the driver uses the highest version supported
by the server. If none of the specified protocols are supported by the database server, the connection fails and
the driver returns an error.

Valid Values
cryptographic_protocol [[, cryptographic_protocol]...]

where:

cryptographic_protocol

is one of the following cryptographic protocols:

TLSv1.2 | TLSv1.1 | TLSv1 | SSLv3 | SSLv2

Caution: Good security practices recommend using TLSv1 or higher, due to known vulnerabilities in the SSLv2
and SSLv3 protocols.

Example
If your security environment is configured to use TLSv1.2 and TLSv1.1, specify the following values:

CryptoProtocolVersion=TLSv1.2, TLSv1.1

Notes

• This option is ignored if Encryption Method is set to 0 (No Encryption).

• Consult your database administrator concerning the data encryption settings of your server.

Default
TLSv1.2, TLSv1.1, TLSv1

GUI Tab
Security tab

203Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Crypto Protocol Version

CryptoLibName

Attribute
CryptoLibName (CLN)

Purpose
The absolute path for the OpenSSL library file containing the cryptographic library to be used by the data source
or connection when SSL is enabled. The cryptograpic library contains the implementations of cryptographic
algorithms the driver uses for data encryption.

This option allows you to designate a different cryptographic library if you encounter issues with the default
version or want to use a library that you provide. Common issues that require designating a different library
include security vulnerabilities with specific libraries or compatibility issues with your server or application.

Valid Values
absolute_path\openssl_filename

where:

absolute_path

is the absolute path to where the OpenSSL file is located

openssl_filename

is the name of the OpenSSL library file containing the cryptographic library to be used by your data
source or connection.

Example
C:\Program Files\Progress\DataDirect\ODBC_80\Drivers\OpenSSL\1.0.2d\ddssl28.dll

Notes

• The OpenSSL library files provided by Progress combine the cryptographic and SSL libraries into a single
file; therefore, when your drivers are using a Progress library file, the values specified for the CryptoLibName
and SSLLibName options should be the same. For non-Progress library files, the libraries may use separate
files, which would require unique values to be specified.

• This option can be used to designate OpenSSL libraries not installed by the product; however, the drivers
are only certified against libraries provided by Progress.

Default
Empty string

GUI Tab
The value for this option is specified as an option-value pair in the Extended Options field on the Advanced
tab. For example:

CryptoLibName=C:\Program Files\Progress\DataDirect\

ODBC_80\drivers\OpenSSL\1.0.2d\ddssl28.dll;

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2204

Chapter 7: Connection Option Descriptions

See also

• SSLLibName on page 253

• Advanced Tab on page 80

Data Integrity Level

Attribute
DataIntegrityLevel (DIL)

Purpose
Specifies a preference for the data integrity to be used on data sent between the driver and the database
server. The connection fails if the database server does not have a compatible integrity algorithm. See
"Encryption and Data Integrity" for more information.

Valid Values
0 | 1 | 2 | 3

Behavior
If set to 0 (Rejected), a data integrity check on data sent between the driver and the database server is refused.
The connection fails if the database server specifies REQUIRED.

If set to 1 (Accepted), a data integrity check can be made on data sent between the driver and the database
server. Data integrity is used if the database server requests or requires it.

If set to 2 (Requested), the driver enables a data integrity check on data sent between the driver and the
database server if the database server permits it.

If set to 3 (Required), a data integrity check must be performed on data sent between the driver and the
database server. The connection fails if the database server specifies REJECTED.

Notes

• Consult your database administrator concerning the data integrity settings of your Oracle server.

• This connection option can affect performance.

Default
1 (Accepted)

GUI Tab
Advanced Security tab

See also

• Oracle Advanced Security on page 141

• Performance Considerations on page 115

205Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Data Integrity Level

Data Integrity Types

Attribute
DataIntegrityTypes (DIT)

Purpose
Determines the method the driver uses to protect against attacks that intercept and modify data being transmitted
between the client and server.You can enable data integrity protection without enabling encryption. See
"Encryption and Data Integrity" for more information.

Valid Values
value [[, value]...]

where:

value

is one of the following cryptographic algorithms:

MD5 | SHA1 | SHA256 | SHA384 | SHA512

If multiple values are specified and Oracle Advanced Security data integrity is enabled using the Data Integrity
Level option, the database server determines which algorithm is used based on how it is configured.

Notes

• This option has no effect if "Data Integrity Level" is set to 0 - Rejected.

• Consult your database administrator concerning the data integrity settings of your Oracle server.

• This connection option can affect performance.

Default
MD5,SHA1,SHA256,SHA384,SHA512

GUI Tab
Advanced Security tab

See also

• Data Integrity Level on page 205

• Oracle Advanced Security on page 141

• Performance Considerations on page 115

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2206

Chapter 7: Connection Option Descriptions

Data Source Name

Attribute
DataSourceName (DSN)

Description
Specifies the name of a data source in your Windows Registry or odbc.ini file.

Valid Values
string

where:

string

is the name of a data source.

Default
None

GUI Tab
General tab

Default Buffer Size for Long/LOB Columns (in Kb)

Attribute
DefaultLongDataBuffLen (DLDBL)

Purpose
The maximum length of data (in KB) the driver can fetch from long columns in a single round trip and the
maximum length of data that the driver can send using the SQL_DATA_AT_EXEC parameter.

Valid Values
An integer in multiples of 1024

The value must be in multiples of 1024 (for example, 1024, 2048).You need to increase the default value if
the total size of any Long data exceeds 1 MB. This value is multiplied by 1024 to determine the total maximum
length of fetched data. For example, if you enter a value of 2048, the maximum length of data would be 1024
x 2048, or 2097152 (2 MB).

Notes

• This connection option can affect performance.

207Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Data Source Name

Default
1024

GUI Tab
Advanced tab

See also
Performance Considerations on page 115

Describe at Prepare

Attribute
DescribeAtPrepare (DAP)

Purpose
Determines whether the driver describes the SQL statement at prepare time.

This connection option can affect performance.

Valid Values
0 | 1

If set to 1 (Enabled), the driver describes the SQL statement at prepare time.

If set to 0 (Disabled), the driver does not describe the SQL statement at prepare time.

Notes

• This connection option can affect performance.

Default
0 (Disabled)

GUI Tab
Advanced tab

See also
Performance Considerations on page 115

Description

Attribute
Description (n/a)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2208

Chapter 7: Connection Option Descriptions

Purpose
Specifies an optional long description of a data source. This description is not used as a runtime connection
attribute, but does appear in the ODBC.INI section of the Registry and in the odbc.ini file.

Valid Values
string

where:

string

is a description of a data source.

Default
None

GUI Tab
General tab

Edition Name

Attribute
EditionName (EN)

Purpose
The name of the Oracle edition the driver uses when establishing a connection. Oracle 11g R2 and higher
allows your database administrator to create multiple editions of schema objects so that your application can
still use those objects while the database is being upgraded. This option is only valid for Oracle 11g R2 and
higher databases and tells the driver which edition of the schema objects to use.

The driver uses the default edition in the following cases:

• When the specified edition is not a valid edition.The driver generates a warning indicating that it was unable
to set the current edition to the specified edition.

• When the value for this option is not specified or is set to an empty string.

If failover is enabled using the Failover Mode connection option and a connection fails over to another database
server, the driver connects to the alternate server using the same edition that was used for the failed connection.
The driver does not track changes to the current edition made using the ALTER SESSION SQL statement.

Valid Values
string

where:

string

is the name of a valid Oracle edition.

209Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Edition Name

Default
None

GUI Tab
General tab

Enable Bulk Load

Supported on Windows, UNIX, and Linux only.

Attribute
EnableBulkLoad (EBL)

Purpose
Specifies the bulk load method.

To override the value set by this connection option for an individual statement, set a different value in the
SQL_ATTR_BULK_LOAD_ENABLED statement attribute (attribute value 1062) on the SQLSetStmtAttr()
function. Setting the attribute has the same behavior as setting this connection option. To enable this option,
set a value of SQL_TRUE. To disable, set a value of SQL_FALSE. This statement is defined in the qesqlext.h
file, which is installed with the driver.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver uses the database bulk load protocol when an application executes an INSERT
with multiple rows of parameter data. If the protocol cannot be used, the driver returns a warning.

If set to 0 (Disabled), the driver uses standard parameter arrays.

Statement Attribute
To override the value set by this connection option for an individual statement, set a different value in the
SQL_ATTR_BULK_LOAD_ENABLED statement attribute on the SQLSetStmtAttr() function. Specify one of
the following values when using

If set to 1 (Enabled), the driver uses the database bulk load protocol when an application executes an INSERT
with multiple rows of parameter data. If the protocol cannot be used, the driver returns a warning.

If set to 0 (Disabled), the driver uses standard parameter arrays.

Default
0 (Disabled)

GUI Tab
Bulk Tab

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2210

Chapter 7: Connection Option Descriptions

See Also
Performance Considerations on page 115

Enable N-CHAR Support

Note: The Enable N-CHAR Support connection option has been deprecated, and the driver behavior has been
updated to always provide support for the N-types NCHAR, NVARCHAR2 and NCLOB. For compatibility
purposes, the EnableNcharSupport attribute can still be manually configured for this release, but will be
deprecated in subsequent versions of the product. To configure the attribute on Windows, use the Extended
Options field on the Advanced tab. For UNIX/Linux, using a text editor, add the attribute to your data source
in the odbc.ini file.

Attribute
EnableNcharSupport (ENS)

Purpose
Determines whether the driver provides support for the N-types NCHAR, NVARCHAR2, and NCLOB. These
types are described as SQL_WCHAR, SQL_WVARCHAR, and SQL_WLONGVARCHAR, and are returned
as supported by SQLGetTypeInfo. In addition, the "normal" char types (char, varchar2, long, clob) are described
as SQL_CHAR, SQL_VARCHAR, and SQL_LONGVARCHAR regardless of the character set on the Oracle
server.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver provides support for the N-types NCHAR, NVARCHAR2, and NCLOB.

If set to 0 (Disabled), the driver does not provide support for the N-types NCHAR, NVARCHAR2, and NCLOB.

Notes

• Valid only on Oracle 9i and higher.

Default
None

See also

• Advanced Tab on page 80

GUI Tab
None

211Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Enable N-CHAR Support

Enable Scrollable Cursors

Attribute
EnableScrollableCursors (ESC)

Purpose
Determines whether scrollable cursors, both Keyset and Static, are enabled for the data source.

This connection option can affect performance.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), scrollable cursors are enabled for the data source.

If set to 0 (Disabled), scrollable cursors are not enabled.

Notes

• This connection option can affect performance.

Default
1 (Enabled)

GUI Tab
Performance tab

See also
Performance Considerations on page 115

Enable Server Result Cache

Attribute
EnableServerResultCache (ESRC)

Purpose
Determines whether the driver sets the RESULT_CACHE_MODE session parameter to FORCE.

This option only applies to connections to Oracle 11g or higher database servers that support server-side result
set caching.

This connection option can affect performance.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2212

Chapter 7: Connection Option Descriptions

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver sets the RESULT_CACHE_MODE session parameter to FORCE.

If set to 0 (Disabled), the driver does not sets the RESULT_CACHE_MODE session parameter.

Notes

• Oracle Autonomous Data Warehouse Cloud requires server-side result caching to be enabled. Therefore,
this property is ignored and server-side result caching is always enabled when connected to the Oracle
Autonomous Data Warehouse service.

• This connection option can affect performance.

Default
0 (Disabled)

GUI Tab
Advanced tab

See also
Performance Considerations on page 115

Enable SQLDescribeParam

Attribute
EnableDescribeParam (EDP)

Purpose
Determines whether the driver supports the SQLDescribeParam function, which allows an application to describe
parameters in SQL statements and in stored procedure calls.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver supports SQLDescribeParam. If using Microsoft Remote Data Objects (RDO)
to access data, you must use this value.

If set to 0 (Disabled), the driver does not support SQLDescribeParam and returns the error: unimplemented
function.

Default
0 (Disabled)

213Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Enable SQLDescribeParam

GUI Tab
Advanced tab

Enable Static Cursors for Long Data

Attribute
EnableStaticCursorsForLongData (ESCLD)

Purpose
Determines whether the driver supports Long columns when using a static cursor. Enabling this option causes
a performance penalty at the time of execution when reading Long data.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver supports Long columns when using a static cursor.

If set to 0 (Disabled), the driver does not support Long columns when using a static cursor.

Notes

• You must enable this option if you want to persist a result set that contains Long data into an XML data file.

• This connection option can affect performance.

Default
0 (Disabled)

GUI Tab
Performance tab

See also
Performance Considerations on page 115

Enable Timestamp with Timezone

Note: The Enable Timestamp with Timezone connection has been deprecated, and the driver behavior has
been updated to always expose timestamps with timezones to the application. For compatibility purposes, the
EnableTimestampwithTimezone attribute can still be manually configured for this release, but will be deprecated
in subsequent versions of the product. To configure the attribute on Windows, use the Extended Options field
on the Advanced tab. For UNIX/Linux, using a text editor, add the attribute to your data source in the odbc.ini
file.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2214

Chapter 7: Connection Option Descriptions

Attribute
EnableTimestampwithTimezone (ETWT)

Purpose
Determines whether the driver exposes timestamps with timezones to the application.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver exposes timestamps with timezones to the application. The driver issues an
ALTER SESSION at connection time to modify NLS_TIMESTAMP_TZ_FORMAT.
NLS_TIMESTAMP_TZ_FORMAT is changed to the ODBC definition of a timestamp literal with the addition of
the timezone literal: 'YYYY-MM-DD HH24:MI:SSXFF TZR'.

If set to 0 (Disabled), timestamps with timezones are not exposed to the application.

Default
None

See Also

• Advanced Tab on page 80

GUI Tab
None

Encryption Level

Attribute
EncryptionLevel (EL)

Purpose
Specifies a preference on whether to use encryption on data being sent between the driver and the database
server.

Valid Values
0 | 1 | 2 | 3

Behavior
If set to 0 (Rejected), or if no match is found between the driver and server encryption types, data sent between
the driver and the database server is not encrypted or decrypted. The connection fails if the database server
specifies REQUIRED.

If set to 1 (Accepted), encryption is used on data sent between the driver and the database server if the database
server requests or requires it.

215Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Encryption Level

If set to 2 (Requested), data sent between the driver and the database server is encrypted and decrypted if
the database server permits it.

If set to 3 (Required), data sent between the driver and the database server must be encrypted and decrypted.
The connection fails if the database server specifies REJECTED.

Notes

• Consult your database administrator concerning the data encryption settings of your Oracle server.

• This connection option can affect performance.

Default
1 (Accepted)

GUI Tab
Advanced Security tab

See also
Performance Considerations on page 115

Encryption Method

Attribute
EncryptionMethod (EM)

Purpose
The method the driver uses to encrypt data sent between the driver and the database server. If the specified
encryption method is not supported by the database server, the connection fails and the driver returns an error.

Valid Values
0 | 1

Behavior
If set to 0 (No Encryption), data is not encrypted.

If set to 1 (SSL), data is encrypted using the SSL protocols specified in the Crypto Protocol Version connection
option.

Notes

• Consult your database administrator concerning the SSL settings of your Oracle server.

• This connection option can affect performance.

Default
0 (No Encryption)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2216

Chapter 7: Connection Option Descriptions

GUI Tab
Security tab

See also
Performance Considerations on page 115

Encryption Types

Attribute
EncryptionTypes (ET)

Purpose
Specifies a comma-separated list of the encryption algorithms to use if Oracle Advanced Security encryption
is enabled using the Encryption Level connection property.

Valid Values
encryption_algorithm [[, encryption_algorithm]...]

where:

encryption_algorithm

is a encryption algorithm specifying an algorithm in the following table:

AES256 | RC4_256 | AES192 | 3DES168 | AES128 | RC4_128 | 3DES112 | RC4_56 | DES | RC4_40

DescriptionEncryption Algorithm

Two-key Triple-DES (with an effective key size of 112-bit).3DES112

AES with a 128-bit key size.AES128

AES with a 192-bit key size.AES192

AES with a 256-bit key size.AES256

DES (with an effective key size of 56-bit).DES

Three-key Triple-DES (with an effective key size of 168-bit).DES168

RC4-128 with a 128-bit key size.RC4_128

RC4 with a 256-bit key size.RC4_256

RSA RC4 with a 40-bit key size.RC4_40

RSA RC4 with a 56-bit key size.RC4_56

217Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Encryption Types

Example
Your security environments specifies that you can use RC4 with a 256-bit key size, AES with a 192-bit key
size, or two-key Triple-DES with an effective key size of 112-bit. Use the following values:

EncryptionTypes=RC4_256,AES192,3DES112

Notes

• This option is ignored if Encryption Level is set to 0 (Rejected).

• Consult your database administrator concerning the data encryption settings of your Oracle server.

• This connection option can affect performance.

Default
On the GUI tab: all check boxes are selected.

In the connection string: no encryption methods are specified. The driver sends a list of all of the encryption
methods to the Oracle server.

GUI Tab
Advanced Security tab

See also
Performance Considerations on page 115

Failover Granularity

Attribute
FailoverGranularity (FG)

Purpose
Determines whether the driver fails the entire failover process or continues with the process if errors occur
while trying to reestablish a lost connection.

This option applies only when Failover Mode is set to 1 (Extended Connection) or 2 (Select).

The Alternate Servers option specifies one or multiple alternate servers for failover and is required for all failover
methods.

Valid Values
0 | 1 | 2 | 3

Behavior
If set to 0 (Non-Atomic), the driver continues with the failover process and posts any errors on the statement
on which they occur.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2218

Chapter 7: Connection Option Descriptions

If set to 1 (Atomic) the driver fails the entire failover process if an error is generated as the result of anything
other than executing and repositioning a Select statement. If an error is generated as a result of repositioning
a result set to the last row position, the driver continues with the failover process, but generates a warning that
the Select statement must be reissued.

If set to 2 (Atomic Including Repositioning), the driver fails the entire failover process if any error is generated
as the result of restoring the state of the connection or the state of work in progress.

If set to 3 (Disable Integrity Check), the driver does not verify that the rows that were restored during the failover
process match the original rows. This value applies only when Failover Mode is set to 2 (Select).

Default
0 (Non-Atomic)

GUI Tab
Failover tab

Failover Mode

Attribute
FailoverMode (FM)

Purpose
Specifies the type of failover method the driver uses.

The Alternate Servers option specifies one or multiple alternate servers for failover and is required for all failover
methods.

Valid Values
0 | 1 | 2

Behavior
If set to 0 (Connection), the driver provides failover protection for new connections only.

If set to 1 (Extended Connection), the driver provides failover protection for new and lost connections, but not
any work in progress.

If set to 2 (Select), the driver provides failover protection for new and lost connections. In addition, it preserves
the state of work performed by the last Select statement executed.

Default
0 (Connection)

GUI Tab
Failover tab

219Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Failover Mode

Failover Preconnect

Attribute
FailoverPreconnect (FP)

Description
Specifies whether the driver tries to connect to the primary and an alternate server at the same time.

This attribute applies only when Failover Mode is set to 1 (Extended Connection) or 2 (Select) and at least one
alternate server is specified.

The Alternate Servers option specifies one or multiple alternate servers for failover and is required for all failover
methods.

Valid Values
0 | 1

Behavior
If set to 0 (Disabled), the driver tries to connect to an alternate server only when failover is caused by an
unsuccessful connection attempt or a lost connection. This value provides the best performance, but your
application typically experiences a short wait while the failover connection is attempted.

If set to 1 (Enabled), the driver tries to connect to the primary and an alternate server at the same time. This
can be useful if your application is time-sensitive and cannot absorb the wait for the failover connection to
succeed.

Default
0 (Disabled)

GUI Tab
Failover tab

Fetch TSWTZ as Timestamp

Attribute
FetchTSWTZasTimestamp (FTSWTZAT)

Purpose
Determines whether the driver returns column values with the timestamp with time zone data type as the ODBC
data type SQL_TYPE_TIMESTAMP or SQL_VARCHAR.

Valid on Oracle 10g R2 or higher.

Valid Values
0 | 1

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2220

Chapter 7: Connection Option Descriptions

Behavior
If set to 1 (Enabled), the driver returns column values with the timestamp with time zone data type as the ODBC
type SQL_TYPE_TIMESTAMP. The time zone information in the fetched value is truncated. Use this value if
your application needs to process values the same way as TIMESTAMP columns.

If set to 0 (Disabled), the driver returns column values with the timestamp with time zone data type as the
ODBC data type SQL_VARCHAR. Use this value if your application requires the time zone information in the
fetched value.

Default
0 (Disabled)

GUI Tab
Advanced tab

Field Delimiter

Supported on Windows, UNIX, and Linux only.

Attribute
BulkLoadFieldDelimiter (BLFD)

Purpose
Specifies the character that the driver will use to delimit the field entries in a bulk load data file.

Valid Values
x

where:

x

is any printable character.

For simplicity, avoid using a value that can be in the data, including all alphanumeric characters, the dash(-),
the colon(:), the period (.), the forward slash (/), the space character, the single quote (') and the double quote
(").You can use some of these characters as delimiters if all of the data in the file is contained within double
quotes.

Notes

• The Bulk Load Field Delimiter character must be different from the Bulk Load Record Delimiter.

Default
None

221Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Field Delimiter

GUI Tab
Bulk tab

GSS Client Library

Attribute
GSSClient (GSSC)

Purpose
The name of the GSS client library that the driver uses to communicate with the Key Distribution Center (KDC).

The driver uses the path defined by the PATH environment variable for loading the specified client library.

Valid Values
native | client_library

where:

client_library is a GSS client library installed on the client.

Behavior
If set to native, the driver uses the GSS client shipped with the operating system.

If set to client_library, the driver uses the specified GSS client library.

Default
native

GUI Tab
Security tab

Host

Attribute
HostName (HOST)

Purpose
The name or the IP address of the server to which you want to connect.

Valid Values
server_name | IP_address

where:

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2222

Chapter 7: Connection Option Descriptions

server_name

is the name of the server to which you want to connect.

IP_address

is the IP address of the server to which you want to connect.

The IP address can be specified in either IPv4 or IPv6 format, or a combination of the two. See "Using IP
Addresses" for details about these formats.

Notes

• This option is mutually exclusive with the Server Name and TNSNames File options.

• When a value is specified for the LDAP Distinguished Name option, this option specifies the name or IP
address of the LDAP directory server.

Default
None

GUI Tab
General tab

See Also

• Using IP Addresses on page 52

Host Name In Certificate

Attribute
HostNameInCertificate (HNIC)

Purpose
A host name for certificate validation when SSL encryption is enabled (EncryptionMethod= 1 | 3 | 4 | 5)
and validation is enabled (ValidateServerCertificate=1).This option provides additional security against
man-in-the-middle (MITM) attacks by ensuring that the server the driver is connecting to is the server that was
requested.

Valid Values
host_name | #SERVERNAME#

where

host_name

is the host name specified in the certificate. Consult your SSL administrator for the correct value.

223Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Host Name In Certificate

Behavior
If set to a host_name, the driver examines the subjectAltName values included in the certificate. If a dnsName
value is present in the subjectAltName values, then the driver compares the value specified for Host Name In
Certificate with the dnsName value. The connection succeeds if the values match. The connection fails if the
Host Name In Certificate value does not match the dnsName value.

If no subjectAltName values exist or a dnsName value is not in the list of subjectAltName values, then the
driver compares the value specified for Host Name In Certificate with the commonName part of the Subject
name in the certificate. The commonName typically contains the host name of the machine for which the
certificate was created. The connection succeeds if the values match. The connection fails if the Host Name
In Certificate value does not match the commonName. If multiple commonName parts exist in the Subject
name of the certificate, the connection succeeds if the Host Name In Certificate value matches any of the
commonName parts.

If set to #SERVERNAME#, the driver compares the host server name specified as part of a data source or
connection string to the dnsName or the commonName value.

Default
None

GUI Tab
Security tab

IANAAppCodePage

Supported on UNIX, Linux, and macOS only.

Attribute
IANAAppCodePage (IACP)

Purpose
An Internet Assigned Numbers Authority (IANA) value.You must specify a value for this option if your application
is not Unicode-enabled or if your database character set is not Unicode.

The driver uses the specified IANA code page to convert "W" (wide) functions to ANSI.

The driver and Driver Manager both check for the value of IANAAppCodePage in the following order:

• In the connection string

• In the Data Source section of the system information file (odbc.ini)

• In the ODBC section of the system information file (odbc.ini)

If the driver does not find an IANAAppCodePage value, the driver uses the default value of 4 (ISO 8859-1
Latin-1).

To override the value set by this connection option for an individual statement, set a different value in the
SQL_ATTR_IANA_APP_CODE_PAGE statement attribute (attribute value 1064) on the SQLSetStmtAttr()
function. This statement is defined in the qesqlext.h file, which is installed with the driver.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2224

Chapter 7: Connection Option Descriptions

Valid Values
IANA_code_page

where:

IANA_code_page

is one of the valid values listed in "Code Page Values." The value must match the database character
encoding and the system locale.

Default
4 (ISO 8559-1 Latin-1)

GUI Tab
Advanced tab

See also
Code Page Values on page 267
Internationalization, Localization, and Unicode on page 283

Impersonate User

Attribute
ImpersonateUser (IU)

Purpose
Specifies the proxy user ID used for impersonation. The value for Impersonate User determines your identity
and permissions when executing queries. When a value is specified for this option, the driver authenticates
according to the setting of the Authentication Method option; then, after establishing a connection, the driver
attempts to reauthenticate as the destination user. Note that the administrator must grant CONNECT THROUGH
permission to the authenticated user in order to impersonate the destination user; otherwise, an error is returned.

Valid Values
destination_userid

where:

destination_userid

is a valid user ID with permissions to access the database. Case-sensitive values must be enclosed
in either single or double quotation marks.

Default
None

GUI Tab
Security tab

225Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Impersonate User

Initialization String

Attribute
InitializationString (IS)

Purpose
A SQL command that is issued immediately after connecting to the database to manage session settings.

Valid Values
SQL_command

where:

SQL_command

is a valid SQL command that is supported by the database.

Example
To set the date format on every connection, specify:

Initialization String=ALTER SESSION SET DATE_FORMAT = 'DD/MM/YYYY'

Notes

• If the statement fails to execute, the connection fails and the driver reports the error returned from the server.

Default
None

GUI Tab
Advanced tab

Key Password

Attribute
KeyPassword (KP)

Purpose
The password used to access the individual keys in the keystore file when SSL is enabled (Encryption
Method=0 | 1 | 3 | 4 | 5) and SSL client authentication is enabled on the database server. Keys stored in a
keystore can be individually password-protected. To extract the key from the keystore, the driver must have
the password of the key.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2226

Chapter 7: Connection Option Descriptions

Valid Values
key_password

where:

key_password

is the password of a key in the keystore.

Default
None

GUI Tab
Security tab

Key Store

Attribute
Keystore (KS)

Purpose
The absolute path of the keystore file to be used when SSL is enabled (EncryptionMethod=1) and SSL
client authentication is enabled on the database server.The keystore file contains the certificates that the client
sends to the server in response to the server’s certificate request. If you do not specify a directory, the current
directory is used.

Valid Values
keystore_directory

where:

keystore_directory

is the location of the keystore file.

Notes

• The keystore and truststore files can be the same file.

Default
None

GUI Tab
Security tab

227Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Key Store

Key Store Password

Attribute
KeystorePassword (KSP)

Purpose
The password used to access the keystore file when SSL is enabled (EncryptionMethod=1) and SSL client
authentication is enabled on the database server.The keystore file contains the certificates that the client sends
to the server in response to the server’s certificate request.

Valid Values
keystore_password

where:

keystore_password

is the password of the keystore file.

Notes

• The keystore and truststore files may be the same file; therefore, they may have the same password.

Default
None

GUI Tab
Security tab

LDAP Distinguished Name

Supported on Windows, UNIX, and Linux only.

Attribute
LDAPDistinguishedName (LDN)

Purpose
Specifies the distinguished name for the LDAP entry that contains your connection information. Using an LDAP
entry provides simplified maintenance by allowing you to centrally store and access connection information.
LDAP entries specify the Host, Port Number, and Service Name or SID for the target database using the
orclNetDescString attribute.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2228

Chapter 7: Connection Option Descriptions

Valid Values
distinguished_name

where:

distinguished_name

is the fully qualified path of names in the LDAP directory information tree for the entry containing
your connection information. For example,
cn=DB122,cn=OracleContext,dc=america,dc=yourcompany,dc=com.

Notes

• This option is mutually exclusive with the TNSNames File (TNSNamesFile), SID (SID), and Service Name
(ServiceName) options.

• If a value is specified for this option, the Host (HostName) and Port Number (PortNumber) options are used
to specify the host and port number for the LDAP directory server.

Default
No default value

GUI Tab
General tab

See Also

• Host on page 222

• Port Number on page 237

• Using LDAP on page 119

Load Balancing

Attribute
LoadBalancing (LB)

Purpose
Determines whether the driver uses client load balancing in its attempts to connect to the database servers
(primary and alternate).You can specify one or multiple alternate servers by setting the Alternate Servers
option.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver uses client load balancing and attempts to connect to the database servers
(primary and alternate servers) in random order.

229Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Load Balancing

If set to 0 (Disabled), the driver does not use client load balancing and connects to each server based on their
sequential order (primary server first, then, alternate servers in the order they are specified).

Default
0 (Disabled)

GUI Tab
Failover tab

LoadBalance Timeout

Supported on Windows, UNIX, and Linux only.

Attribute
LoadBalanceTimeout (LBT)

Purpose
Specifies the number of seconds to keep inactive connections open in a connection pool. An inactive connection
is a database session that is not associated with an ODBC connection handle, that is, a connection in the pool
that is not in use by an application.

Valid Values
0 | x

where:

x

is a positive integer that specifies a number of seconds.

Behavior
If set to 0, inactive connections are kept open.

If set to x, inactive connections are closed after the specified number of seconds passes.

Notes

• The Min Pool Size option may cause some connections to ignore this value.

Default
0

GUI Tab
Pooling tab

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2230

Chapter 7: Connection Option Descriptions

LOB Prefetch Size

Attribute
LOBPrefetchSize (LPS)

Purpose
Specifies the size of prefetch data the server returns for BLOBs and CLOBs. LOB Prefetch Size is supported
for Oracle database versions 12.1.0.1 and higher.

Valid Values
-1 | 0 | x

where:

x

is a positive integer that represents the size of a BLOB in bytes or the size of a CLOB in characters.

Behavior
If set to -1, the property is disabled.

If set to 0, the server returns only LOB meta-data such as LOB length and chunk size with the LOB locator
during a fetch operation.

If set to x, the server returns LOB meta-data and the beginning of LOB data with the LOB locator during a fetch
operation. This can have significant performance impact, especially for small LOBs which can potentially be
entirely prefetched, because the data is available without having to go through the LOB protocol.

Default
4000

GUI Tab
Performance tab

See Also
Performance Considerations on page 115

Local Timezone Offset

Attribute
LocalTimezoneOffset (LTZO)

231Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

LOB Prefetch Size

Purpose
A value to alter local time zone information. The default is "" (empty string), which means that the driver
determines local time zone information from the operating system. If it is not available from the operating
system, the driver defaults to using the setting on the Oracle server.

Valid Values
Valid values are specified as offsets from GMT as follows: (–)HH:MM. For example, -08:00 equals GMT
minus 8 hours.

The driver uses the value of this option to issue an ALTER SESSION for local time zone at connection time.

Default
"" (empty string)

GUI Tab
Advanced tab

Lock Timeout

Attribute
LockTimeout (LTO)

Purpose
Specifies the amount of time, in seconds, the Oracle server waits for a lock to be released before generating
an error when processing a Select...For Update statement on an Oracle 9i or higher server.

This connection option can affect performance.

Valid Values
-1 | 0 | x

where:

x

is an integer that specifies a number of seconds.

Behavior
If set to -1, the server waits indefinitely for the lock to be released.

If set to 0, the server generates an error immediately and does not wait for the lock to time out.

If set to x, the server waits for the specified number of seconds for the lock to be released.

Notes

• This connection option can affect performance.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2232

Chapter 7: Connection Option Descriptions

Default
-1

GUI Tab
Performance tab

See also
Performance Considerations on page 115

Login Timeout

Attribute
LoginTimeout (LT)

Purpose
The number of seconds the driver waits for a connection to be established before returning control to the
application and generating a timeout error. To override the value that is set by this connection option for an
individual connection, set a different value in the SQL_ATTR_LOGIN_TIMEOUT connection attribute using
the SQLSetConnectAttr() function.

Valid Values
-1 | 0 | x

where:

x

is a positive integer that represents a number of seconds.

Behavior
If set to -1, the connection request does not time out. The driver silently ignores the
SQL_ATTR_LOGIN_TIMEOUT attribute.

If set to 0, the connection request does not time out, but the driver responds to the
SQL_ATTR_LOGIN_TIMEOUT attribute.

If set to x, the connection request times out after the specified number of seconds unless the application
overrides this setting with the SQL_ATTR_LOGIN_TIMEOUT attribute.

Default
15

GUI Tab
Advanced tab

233Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Login Timeout

Max Pool Size

Supported on Windows, UNIX, and Linux only.

Attribute
MaxPoolSize (MXPS)

Purpose
The maximum number of connections allowed within a single connection pool. When the maximum number of
connections is reached, no additional connections can be created in the connection pool.

Valid Values
An integer from 1 to 65535

Notes

• This connection option can affect performance.

Example
If set to 20, the maximum number of connections allowed in the pool is 20.

Default
100

GUI Tab
Pooling tab

See also
Performance Considerations on page 115

Min Pool Size

Supported on Windows, UNIX, and Linux only.

Attribute
MinPoolSize (MNPS)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2234

Chapter 7: Connection Option Descriptions

Purpose
The minimum number of connections that are opened and placed in a connection pool, in addition to the active
connection, when the pool is created. The connection pool retains this number of connections, even when
some connections exceed their Load Balance Timeout value.

Valid Values
0 | x

where:

x

is an integer from 1 to 65535.

Behavior
If set to 0, no connections are opened in addition to the current existing connection.

If set to x, the start-up number of connections in the pool is 5 in addition to the current existing connection.

Notes

• This connection option can affect performance.

Example
If set to 5, the start-up number of connections in the pool is 5 in addition to the current existing connection.

Default
0

GUI Tab
Pooling tab

See also
Performance Considerations on page 115

Module

Attribute
Module (MOD)

Purpose
Provides additional information about the client to be stored in the database. This value sets the
CLIENT_IDENTIFIER value in the V$SESSION table on the server.This value is used by the client information
feature.

This option only applies to connections to Oracle 10g R2 and higher database servers.

235Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Module

Valid Values
string

where:

string

is a the name of a stored procedure or the name of the application.

Notes

• If a value is not specified for this option, the driver uses the PROGRAM value in the V$SESSION table.

• You can also specify this information using the Oracle DBMS_SESSION.SETIDENTIFIER procedure or
the DBMS_APPLICATION_INFO.SET_CLIENT_INFO procedure.

• This connection option can affect performance.

Default
None

GUI Tab
Client Monitoring tab

See also
Performance Considerations on page 115

Password

Attribute
Password (PWD)

Purpose
The password that the application uses to connect to your database.The Password option cannot be specified
through the driver Setup dialog box and should not be stored in a data source. It is specified through the Logon
dialog box or a connection string.

Valid Values
pwd

where:

pwd

is a valid password.

Default
None

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2236

Chapter 7: Connection Option Descriptions

GUI Tab
Logon dialog

Port Number

Attribute
PortNumber (PORT)

Description
The port number of the server listener.

Valid Values
port_name

where:

port_name

is the port number of the server listener. Check with your database administrator for the correct
number.

Notes

• This option is mutually exclusive with the Server Name and TNSNames File options.

• When a value is specified for the LDAP Distinguished Name option, this option specifies the port number
for the listener of the LDAP directory server.

Default
None

GUI Tab
General tab

Proxy Host

Supported on Windows, UNIX, and Linux only.

Attribute
ProxyHost (PXHN)

237Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Port Number

Purpose
Specifies the Hostname and possibly the Domain of the Proxy Server.The value specified can be a host name,
a fully qualified domain name, or an IPv4 or IPv6 address.

Valid Values
server_name | IP_address

where:

server_name

is the name of the server or a fully qualified domain name to which you want to connect.

The IP address can be specified in either IPv4 or IPv6 format, or a combination of the two. See
"Using IP Addresses" for details about these formats.

Default
Empty string

Notes

• When proxy mode is disabled (ProxyMode=0), the Proxy Host option is ignored.

GUI Tab
General tab

See Also

• Using IP Addresses on page 52

• Proxy Mode on page 238

• Proxy Password on page 239

• Proxy Port on page 240

• Proxy User on page 241

Proxy Mode

Supported on Windows, UNIX, and Linux only.

Attribute
ProxyMode (PXM)

Purpose
Determines whether the driver connects to an endpoint through an HTTP proxy server.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2238

Chapter 7: Connection Option Descriptions

Valid Values
0 | 1

Behavior
If set to 0 (NONE), the driver connects directly to the endpoint specified by the Host connection option.

If set to 1 (HTTP), the driver connects to the endpoint through the HTTP proxy server specified by the ProxyHost
connection option.

Default
0 (NONE)

GUI Tab
General tab

See Also

• Proxy Host on page 237

• Host on page 222

• Using IP Addresses on page 52

• Proxy Password on page 239

• Proxy Port on page 240

• Proxy User on page 241

Proxy Password

Supported on Windows, UNIX, and Linux only.

Attribute
ProxyPassword (PXPW)

Purpose
Specifies the password needed to connect to the proxy server.

Valid Values
String

where:

String

specifies the password to use to connect to the Proxy Server. Contact your system administrator to
obtain your password.

239Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Proxy Password

Notes

• When proxy mode is disabled (ProxyMode=0), the Proxy Password option is ignored.

• Proxy Password is required only when the proxy server has been configured to require authentication.

Default
Empty string

GUI Tab
General tab

See Also

• Using IP Addresses on page 52

• Proxy Host on page 237

• Proxy Mode on page 238

• Proxy Port on page 240

• Proxy User on page 241

Proxy Port

Supported on Windows, UNIX, and Linux only.

Attribute
ProxyPort (PXPT)

Purpose
Specifies the port number where the proxy server is listening for HTTP requests.

Valid Values
port_name

where:

port_name

is the port number of the server listener. Check with your system administrator for the correct number.

Notes

• When proxy mode is disabled (ProxyMode=0), the Proxy Port option is ignored.

Default
0

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2240

Chapter 7: Connection Option Descriptions

GUI Tab
General tab

See Also

• Using IP Addresses on page 52

• Proxy Host on page 237

• Proxy Mode on page 238

• Proxy Password on page 239

• Proxy User on page 241

Proxy User

Supported on Windows, UNIX, and Linux only.

Attribute
ProxyUser (PXU)

Purpose
Specifies the user name needed to connect to the Proxy Server.

Valid Values
The default user ID that is used to connect to the Proxy Server.

Notes

• When proxy mode is disabled (ProxyMode=0), the Proxy User option is ignored.

• Proxy User is required only when the proxy server has been configured to require authentication.

Default
Empty string

GUI Tab
General tab

See Also

• Using IP Addresses on page 52

• Proxy Host on page 237

• Proxy Mode on page 238

• Proxy Password on page 239

• Proxy Port on page 240

241Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Proxy User

PRNGSeedFile

Supported on UNIX, Linux, and macOS only.

Attribute
PRNGSeedFile (PSF)

Purpose
Specifies the absolute path for the entropy-source file or device used as a seed for SSL key generation.

Valid Values
string | RANDFILE

where:

string

is the absolute path for the entropy-source file or device that seeds the random number generator
used for SSL key generation.

Behavior
If set to string, the specified entropy-source file or device seeds the random number generator used for SSL
key generation. Entropy levels and behavior may vary for different files and devices. See the following section
for a list of commonly used entropy sources and their behavior.

If set to RANDFILE, the RAND_file_name() function in your application generates a default path for the
random seed file. The seed file is $RANDFILE if that environment variable is set; otherwise, it is $HOME/.rnd.
If $HOME is not set either, an error occurs.

Common Valid Values
Although other entropy-source files may be specified, the following valid values are for files and devices that
are commonly used for seeding:

/dev/random

is a pseudorandom number generator (blocking) that creates a seed from random bits of environmental
noise it collects in an entropy pool. When there is insufficient noise in the pool, the file blocks calls
until enough noise is collected. This provides more secure SSL key generation, but at the expense
of blocked calls.

/dev/urandom

is a pseudorandom number generator (non-blocking) that creates seeds from random bits from
environmental noise it collects in an entropy pool. When there is insufficient noise in the pool, the
file reuses bits from the pool instead of blocking calls. This eliminates potential delays associated
with blocked calls, but may result in less secure SSL key generation.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2242

Chapter 7: Connection Option Descriptions

/dev/hwrng

is a hardware random number generator. The behavior is dependent on the device used in your
environment.

Notes

• This option is ignored when SSL is disabled (EncryptionMethod=0) or the seed source is set to Poll Only
(PRNGSeedSource=1).

• For processes that employ multiple SSL-enabled drivers, the behavior of this option for all drivers is
determined by the values specified for the driver that first connects to the process and loads the OpenSSL
library. Since the OpenSSL library loads only once per process, the values specified for drivers that
subsequently connect are ignored. To ensure that the correct security settings are used, we recommend
configuring this option identically for all drivers used in a process.

Default
/dev/random

GUI tab
NA

See also
PRNGSeedSource on page 243

PRNGSeedSource

Supported on UNIX, Linux, and macOS only.

Attribute
PRNGSeedSource (PSS)

Purpose
Specifies the source of the seed the driver uses for SSL key generation. Seeds are a pseudorandom or random
value used to set the initial state of the random number generator used to generate SSL keys. Using seeds
with a higher level of entropy, or randomness, provides a more secure transmission of data encrypted using
SSL.

Valid Values
0 | 1

Behavior
If set to 0 (File), the driver uses entropy-source file or device specified in the PRNGSeedFile connection option
as the seed used for SSL key generation.

243Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

PRNGSeedSource

If set to 1 (Poll Only) , the driver uses the RAND_poll function in SSL to create the seed used for SSL key
generation.

Notes

• For processes that employ multiple SSL-enabled drivers, the behavior of this option for all drivers is
determined by the values specified for the driver that first connects to the process and loads the OpenSSL
library. Since the OpenSSL library loads only once per process, the values specified for drivers that
subsequently connect are ignored. To ensure that the correct security settings are used, we recommend
configuring this option identically for all drivers used in a process.

• This option is ignored when SSL is disabled (EncryptionMethod=0)

Default
0 (File)

GUI Tab
NA

See also
PRNGSeedFile on page 242

Procedure Returns Results

Attribute
ProcedureRetResults (PRR)

Purpose
Determines whether the driver returns result sets from stored procedures/functions.

See "Support of Materialized Views" for details.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver returns result sets from stored procedures/functions. When set to 1 and you
execute a stored procedure that does not return result sets, you will incur a small performance penalty.

If set to 0 (Disabled), the driver does not return result sets from stored procedures.

Notes

• This connection option can affect performance.

Default
0 (Disabled)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2244

Chapter 7: Connection Option Descriptions

GUI Tab
Advanced tab

See also
Performance Considerations on page 115

See also
Support of Materialized Views on page 54

Program ID

Attribute
ProgramID (PID)

Purpose
The product and version information of the driver on the client to be stored in the database. This value sets
the PROCESS value in the V$SESSION table on the server.This value is used by the client information feature.

Valid Values
string

where:

string

is a value that identifies the product and version of the driver on the client.

If a value for this option is not specified, the driver uses the process ID of the session.

Notes

• This connection option can affect performance.

Default
None

GUI Tab
Client Monitoring tab

See also
Performance Considerations on page 115

245Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Program ID

Query Timeout

Attribute
QueryTimeout (QT)

Description
The number of seconds for the default query timeout for all statements that are created by a connection. To
override the value set by this connection option for an individual statement, set a different value in the
SQL_ATTR_QUERY_TIMEOUT statement attribute on the SQLSetStmtAttr() function.

Valid Values
where:

x

is a number of seconds.

Behavior
If set to -1, the query does not time out.The driver silently ignores the SQL_ATTR_QUERY_TIMEOUT attribute.

If set to 0, the query does not time out, but the driver responds to the SQL_ATTR_QUERY_TIMEOUT attribute.

If set to x, all queries time out after the specified number of seconds unless the application overrides this value
by setting the SQL_ATTR_QUERY_TIMEOUT attribute.

Default
0

GUI Tab
Advanced tab

Record Delimiter

Supported on Windows, UNIX, and Linux only.

Attribute
BulkLoadRecordDelimiter (BLRD)

Purpose
Specifies the character that the driver will use to delimit the record entries in a bulk load data file.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2246

Chapter 7: Connection Option Descriptions

Valid Values
x

where:

x

is any printable character.

For simplicity, avoid using a value that can be in the data, including all alphanumeric characters, the dash(-),
the colon(:), the period (.), the forward slash (/), the space character, the single quote (') and the double quote
(").You can use some of these characters as delimiters if all of the data in the file is contained within double
quotes.

Notes

• The Bulk Load Record Delimiter character must be different from the Bulk Load Field Delimiter.

Default
None

GUI Tab
Bulk tab

Report Codepage Conversion Errors

Attribute
ReportCodepageConversionErrors (RCCE)

Purpose
Specifies how the driver handles code page conversion errors that occur when a character cannot be converted
from one character set to another.

An error message or warning can occur if an ODBC call causes a conversion error, or if an error occurs during
code page conversions to and from the database or to and from the application.The error or warning generated
is Code page conversion error encountered. In the case of parameter data conversion errors, the
driver adds the following sentence:Error in parameter x, where x is the parameter number.The standard
rules for returning specific row and column errors for bulk operations apply.

Valid Values
0 | 1 | 2

Behavior
If set to 0 (Ignore Errors), the driver substitutes 0x1A for each character that cannot be converted and does
not return a warning or error.

If set to 1 (Return Error), the driver returns an error instead of substituting 0x1A for unconverted characters.

If set to 2 (Return Warning), the driver substitutes 0x1A for each character that cannot be converted and returns
a warning.

247Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Report Codepage Conversion Errors

Default
0 (Ignore Errors)

GUI Tab
Advanced tab

Report Recycle Bin

Attribute
ReportRecycleBin (RRB)

Purpose
Determines whether support is provided for reporting objects that are in the Oracle Recycle Bin.

On Oracle 10g R1 and higher, when a table is dropped, it is not actually removed from the database, but placed
in the recycle bin instead.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), support is provided for reporting objects that are in the Oracle Recycle Bin.

If set to 0 (Disabled), the driver does not return tables contained in the recycle bin in the result sets returned
from SQLTables and SQLColumns. Functionally, this means that the driver filters out any results whose Table
name begins with BIN$.

Default
0 (Disabled)

GUI Tab
Advanced tab

SDU Size

Attribute
SDUSize (SDU)

Purpose
Specifies the size in bytes of the Session Data Unit (SDU) that the driver requests when connecting to the
server.The SDU size is equivalent to the maximum number of bytes in a database protocol packets sent across
the network. The setting of this option serves only as a suggestion to the database server. The actual SDU is
negotiated with the database server.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2248

Chapter 7: Connection Option Descriptions

Valid Values
x

where:

x

is an integer from 512 to 2097152 for Oracle 12c and higher, or, for earlier database versions, an
integer from 512 to 32767.

Behavior
When connecting to the server, the driver requests the specified value to be used as the maximum SDU size.
While the specified value is only a suggestion, it affects the actual SDU size that is negotiated with the server.

To optimize performance, set this option based on the size of result sets returned by your application. If your
application returns large result sets, set this option to the maximum SDU size configured on the database
server. This reduces the total number of round trips required to return data to the client, thus improving
performance. If your application returns small result sets, set this option to a size smaller than the maximum
to avoid burdening your network with unnecessarily large packets.

Notes

• This option is mutually exclusive with the Server Name and TNSNames File connection option. The driver
generates an exception if a value is specified for SDU Size in conjunction with either option.

Default
16384

GUI Tab
Performance tab

See also
Performance Considerations on page 115

Server Name

Attribute
ServerName (SRVR)

Purpose
Specifies a net service name that exists in the TNSNAMES.ORA file.The corresponding net service name entry
in the TNSNAMES.ORA file is used to obtain Host, Port Number, and Service Name or SID information.

Valid Values
server_name

where:

249Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Server Name

server_name

is a net service name in the TNSNAMES.ORA file.

Notes

• This option is mutually exclusive with the LDAP Distinguished Name, Host, Port Number, SID, and Service
Name options.

Default
None

GUI Tab
General tab

Server Process Type

Attribute
ServerType (ST)

Purpose
Determines whether the connection is established using a shared or dedicated server process (dedicated
thread on Windows).

Valid Values
0 | 1 | 2

Behavior
If set to 0 (Server Default), the driver uses the default server process set on the server.

If set to 1 (Shared), the server process used is retrieved from a pool. The socket connection between the
application and server is made to a dispatcher process on the server. This setting allows there to be fewer
processes than the number of connections, reducing the need for server resources. Use this value when a
server must handle a large number of connections.

If set to 2 (Dedicated), a server process is created to service only that connection.When that connection ends,
so does the process (UNIX and Linux) or thread (Windows). The socket connection is made directly between
the application and the dedicated server process or thread. When connecting to UNIX and Linux servers, a
dedicated server process can provide significant performance improvement, but uses more resources on the
server. When connecting to Windows servers, the server resource penalty is insignificant. Use this value if you
have a batch environment with a low number of connections.

Notes

• The server must be configured for shared connections (the SHARED_SERVERS initialization parameter
on the server has a value greater than 0) for the driver to be able to specify the shared server process type.

• This connection option can affect performance.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2250

Chapter 7: Connection Option Descriptions

Default
0 (Server Default)

GUI Tab
Advanced tab

See also
Performance Considerations on page 115

Service Name

Attribute
ServiceName (SN)

Purpose
The Oracle service name that specifies the database used for the connection. The service name is a string
that is the global database name—a name that is comprised of the database name and domain name, for
example:

sales.us.acme.com

The service name is included as part of the Oracle connect descriptor, which is a description of the destination
for a network connection. The service name is specified in the CONNECT_DATA parameter of the connect
descriptor, for example:

(CONNECT_DATA=(SERVICE_NAME=sales.us.acme.com))

In this example, you would specify sales.us.acme.com as the value for the Service Name connection option.

Valid Values
service_name | %DEFAULT%

where:

service_name

is the description of the destination for a network connection.

Behavior
If set to sid, the driver attempts to connect to the Oracle instance that corresponds to the specified Oracle
System Identifier.

If set to %DEFAULT%, the driver attempts to connect to the Service Name specified by the
DEFAULT_SERVICE_LISTENER property in the server-side listener.ora file.

Notes

• This option is mutually exclusive with the LDAP Distinguished Name, SID, Server Name, and TNSNames
File options.

251Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Service Name

Default
None. If no values are specified for the SID, Service Name, and TNSNames options, the driver attempts to
connect to the ORCL SID by default.

GUI Tab
General tab

SID

Attribute
SID (SID)

Purpose
The Oracle System Identifier that refers to the instance of Oracle running on the server.

Valid Values
sid | %DEFAULT%

where:

sid

is the name of the Oracle System Identifier.

Behavior
If set to sid, the driver attempts to connect to the Oracle instance that corresponds to the specified Oracle
System Identifier.

If set to %DEFAULT%, the driver attempts to connect to the SID specified by the DEFAULT_SERVICE_LISTENER
property in the server-side listener.ora file.

Notes

• This option is mutually exclusive with the LDAP Distinguished Name, Service Name, Server Name, and
TNSNames File options.

Default
None. If no values are specified for the LDAP Distinguished Name, SID, Service Name, and TNSNames options,
the driver attempts to connect to the ORCL SID by default.

GUI Tab
General tab

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2252

Chapter 7: Connection Option Descriptions

SSLLibName

Attribute
SSLLibName (SLN)

Purpose
The absolute path for the OpenSSL library file containing the SSL library to be used by the data source or
connection when SSL is enabled. The SSL library contains the implementations of SSL protocols the driver
uses for data encryption.

This option allows you to designate a different SSL library if you encounter issues with the default version or
want to use a library that you provide. Common issues that require designating a different library include security
vulnerabilities with specific libraries or compatibility issues with your server or application.

Valid Values
absolute_path\openssl_filename

where:

absolute_path

is the absolute path to where the OpenSSL file is located

openssl_filename

is the name of the OpenSSL library file containing the SSL Library to be used by your data source
or connection.

Example
C:\Program Files\Progress\DataDirect\ODBC_80\Drivers\OpenSSL\1.0.2d\ddssl28.dll

Notes

• The OpenSSL library files provided by Progress combine the cryptographic and SSL libraries into a single
file; therefore, when your drivers are using a Progress library file, the values specified for the CryptoLibName
and SSLLibName options should be the same. For non-Progress library files, the libraries may use separate
files, which would require unique values to be specified.

• This option can be used to designate OpenSSL libraries not installed by the product; however, the drivers
are only certified against libraries provided by Progress.

Default
Empty string

GUI Tab
The value for this option is specified as an option-value pair in the Extended Options field on the Advanced
tab. For example:

SSLLibName=C:\Program Files\Progress\DataDirect\

ODBC_80\Drivers\OpenSSL\1.0.2r\ddssl28.dll;

253Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

SSLLibName

See also

• CryptoLibName on page 204

• Advanced Tab on page 80

Support Binary XML

Attribute
SupportBinaryXML (SBX)

Purpose
Enables the driver to support XMLType with binary storage on servers running Oracle 12c and higher.

Valid Values
0 | 1

Behavior
If set to 0 (Disabled), the driver does not support XMLType with binary storage and returns the error "This
column type is not currently supported by this driver."

If set to 1 (Enabled), the driver supports XMLType with binary storage by negotiating server and client capabilities
during connection time. As a result of this negotiation, decoded data associated with XMLType columns is
returned in an in-line fashion without locators. This setting is supported only for Oracle 12c and higher.

Notes

• Queries involving XMLType with binary storage and XMLType with CLOB storage are affected when Support
Binary XML is enabled (SupportBinaryXML=1). When Support Binary XML is enabled, XMLType with
binary storage and XMLType with CLOB storage are returned in an in-line fashion without locators. Under
these circumstances, executing a Select that includes XMLType columns can degrade performance because
the driver must pull all in-line data to execute the query.”

Default
0 (Disabled)

GUI Tab
Advanced tab

TCP Keep Alive

Attribute
KeepAlive (KA)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2254

Chapter 7: Connection Option Descriptions

Purpose
Specifies whether the driver enables TCPKeepAlive. TCPKeepAlive maintains idle TCP connections by
periodically passing packets between the client and server. If either the client or server does not respond to a
packet, the connection is considered inactive and is terminated. In addition, TCPKeepAlive prevents valid idle
connections from being disconnected by firewalls and proxies by maintaining network activity.

Valid Values
0 | 1

Behavior
If set to 0 (Disabled), the driver does not enable TCPKeepAlive.

If set to 1 (Enabled), the driver enables TCPKeepAlive.

Default
0 (Disabled)

GUI Tab
Advanced tab

Timestamp Escape Mapping

Attribute
TimestampEscapeMapping (TEM)

Purpose
Determines how the driver maps Date, Time, and Timestamp literals.

Valid Values
0 | 1

Behavior
If set to 0 (Oracle Version Specific), the driver determines whether to use the TO_DATE or TO_TIMESTAMP
function based on the version of the Oracle server to which it is connected. If the driver is connected to an 8.x
server, it maps the Date, Time, and Timestamp literals to the TO_DATE function. If the driver is connected to
a 9.x or higher server, it maps these escapes to the TO_TIMESTAMP function.

If set to 1 (Oracle 8x Compatible), the driver always uses the Oracle 8.x TO_DATE function as if connected to
an Oracle 8.x server.

Default
0 (Oracle Version Specific)

GUI Tab
Advanced tab

255Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Timestamp Escape Mapping

TNSNames File

Attribute
TNSNamesFile (TNF)

Purpose
Specifies the name of the TNSNAMES.ORA file. In a TNSNAMES.ORA file, connection information for Oracle
services is associated with an Oracle net service name. The entry in the TNSNAMES.ORA file specifies Host,
Port Number, and Service Name or SID.

TNSNames File is ignored if no value is specified in the Server Name option. If the Server Name option is
specified but the TNSNames File option is left blank, the TNS_ADMIN environment setting is used for the
TNSNAMES.ORA file path. If there is no TNS_ADMIN setting, the ORACLE_HOME environment setting is used.
On Windows, if ORACLE_HOME is not set, the path is taken from the Oracle section of the Registry.

Using an Oracle TNSNAMES.ORA file to centralize connection information in your Oracle environment simplifies
maintenance when changes occur. If, however, the TNSNAMES.ORA file is unavailable, then it is useful to be
able to open a backup version of the TNSNAMES.ORA file (TNSNames file failover).You can specify one or
more backup, or alternate, TNSNAMES.ORA files.

Valid Values
path_filename

where:

path_filename

is the entire path, including the file name, to the TNSNAMES.ORA file.

Behavior
To specify multiple TNSNAMES.ORA file locations, separate the names with a comma and enclose the locations
in parentheses (you do not need parentheses for a single entry). For example:

(F:\server2\oracle\tnsnames.ora, C:\oracle\product\10.1\db_1\network\admin\tnsnames.ora)

The driver tries to open the first file in the list. If that file is not available, then it tries to open the second file in
the list, and so on.

Connection Retry Count and Connection Retry Delay are also valid with TNSNames failover.The driver makes
at least one attempt to open the files, and, if Connection Retry Count is enabled, more than one. If Connection
Retry Delay is enabled, the driver waits the specified number of seconds between attempts. Load Balancing
is not available for TNSNames failover.

Notes

• This option is mutually exclusive with the LDAP Distinguished Name, Host, Port Number, SID, and Service
Name (ServiceName) options.

• By default, if no value is specified for the Service name or SID in the tnsnames.ora file, the driver will use
the SID or service name specified by the DEFAULT_SERVICE_LISTENER property in the server-side
listener.ora file.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2256

Chapter 7: Connection Option Descriptions

Default
None. If no values is specified for either the LDAP Distinguished Name, SID, Service Name, or TNSNames
option, the driver attempts to connect to the ORCL SID by default.

GUI Tab
General tab

See Also

• Connection Retry Count on page 199

• Connection Retry Delay on page 200

Trust Store

Attribute
Truststore (TS)

Purpose
The absolute path of the truststore file to be used when SSL is enabled (EncryptionMethod=1) and server
authentication is used.The truststore file contains a list of the valid Certificate Authorities (CAs) that are trusted
by the client machine for SSL server authentication. If you do not specify a directory, the current directory is
used.

Valid Values
truststore_directory\filename

where:

truststore_directory

is the directory where the truststore file is located

filename

is the file name of the truststore file.

Notes

• The truststore and keystore files may be the same file.

Default
None

GUI Tab
Security tab

257Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Trust Store

Trust Store Password
TruststorePassword (TSP)

Purpose
Specifies the password that is used to access the truststore file when SSL is enabled (EncryptionMethod=1)
and server authentication is used. The truststore file contains a list of the Certificate Authorities (CAs) that the
client trusts.

Valid Values
truststore_password

where:

truststore_password

is a valid password for the truststore file.

Notes

• The truststore and keystore files may be the same file; therefore, they may have the same password.

Default
None

GUI Tab
Security tab

Use Current Schema for SQLProcedures

Attribute
UseCurrentSchema (UCS)

Description
Determines whether the driver returns only procedures owned by the current user when executing
SQLProcedures.

Valid Values
0 | 1

Behavior
When set to 1 (Enabled), the call for SQLProcedures is optimized, but only procedures owned by the current
user are returned.

When set to 0 (Disabled), the driver does not limit the procedures returned.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2258

Chapter 7: Connection Option Descriptions

Default
1 (Enabled)

GUI Tab
Performance tab

See also
Performance Considerations on page 115

User Name

Attribute
LogonID (UID)

Description
The default user ID that is used to connect to your database.Your ODBC application may override this value
or you may override it in the logon dialog box or connection string.

Valid Values
userid

where:

userid

is a valid user ID with permissions to access the database.

Default
None

GUI Tab
Security tab

Validate Server Certificate

Attribute
ValidateServerCertificate (VSC)

259Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

User Name

Purpose
Determines whether the driver validates the certificate that is sent by the database server when SSL encryption
is enabled (EncryptionMethod=1).When using SSL server authentication, any certificate sent by the server
must be issued by a trusted Certificate Authority (CA). Allowing the driver to trust any certificate returned from
the server even if the issuer is not a trusted CA is useful in test environments because it eliminates the need
to specify truststore information on each client in the test environment.

Valid Values
0 | 1

Behavior
If set to 1 (Enabled), the driver validates the certificate that is sent by the database server. Any certificate from
the server must be issued by a trusted CA in the truststore file. If the Host Name In Certificate option is specified,
the driver also validates the certificate using a host name. The Host Name In Certificate option provides
additional security against man-in-the-middle (MITM) attacks by ensuring that the server the driver is connecting
to is the server that was requested.

If set to 0 (Disabled), the driver does not validate the certificate that is sent by the database server. The driver
ignores any truststore information specified by the Trust Store and Trust Store Password options.

Notes

• Truststore information is specified using the TrustStore and TrustStorePassword options.

Default
1 (Enabled)

GUI Tab
Security tab

Wallet Password

Attribute
CredentialsWalletPassword (CWPWD)

Purpose
Specifies the password used to access the Oracle Wallet in which your database credential information is
stored. When AuthenticationMethod=14 (Wallet UID & PWD), the driver uses this value to retrieve the
database user ID and password that is stored in the wallet file specified by the Credentials Wallet Path
(CredentialsWalletPath) option.

Valid Values
credentials_password

where:

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2260

Chapter 7: Connection Option Descriptions

credentials_password

is the password used to access the Oracle Wallet in which your database credential information is
stored. This value is typically the password used to create your wallet.

Notes

• This option is required only if you are using an ewallet.p12 file for your wallet. For wallets using a
cwallet.sso file, the password for the wallet is stored in this file and, therefore, no value for this option
needs to be provided.

• If your wallet contains multiple user ID and password pairs, specify the entry containing the correct credentials
using the Credentials Wallet Entry (CredentialsWalletEntry) option.

Default
None

GUI Tab
Logon dialog

See Also

• Oracle Wallet Password Store on page 136

Wire Protocol Mode

Attribute
WireProtocolMode (WPM)

Description
Specifies whether the driver optimizes network traffic to the Oracle server.

Valid Values
1 | 2

Behavior
If set to 1, the driver operates in normal wire protocol mode without optimizing network traffic.

If set to 2, the driver optimizes network traffic to the Oracle server for result sets that contain repeating data in
some or all of the columns, and the repeating data is in consecutive rows. It also optimizes network traffic if
the application is updating or inserting images, pictures, or long text or binary data.

Notes

• This connection option can affect performance.

Default
2

261Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Wire Protocol Mode

GUI Tab
Performance tab

See Also
Performance Considerations on page 115

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2262

Chapter 7: Connection Option Descriptions

I
Reference

This part provides detailed reference information about your Progress DataDirect for ODBC driver.

For details, see the following topics:

• Code Page Values

• ODBC API and Scalar Functions

• Internationalization, Localization, and Unicode

• Designing ODBC Applications for Performance Optimization

• Using Indexes

• Locking and Isolation Levels

• SSL Encryption Cipher Suites

• DataDirect Bulk Load

• Threading

• WorkAround Options

Using Indexes
This chapter discusses the ways in which you can improve the performance of database activity using indexes.
It provides general guidelines that apply to most databases. Consult your database vendor’s documentation
for more detailed information.

263Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Introduction

An index is a database structure that you can use to improve the performance of database activity. A database
table can have one or more indexes associated with it.

An index is defined by a field expression that you specify when you create the index. Typically, the field
expression is a single field name, like emp_id. An index created on the emp_id field, for example, contains a
sorted list of the employee ID values in the table. Each value in the list is accompanied by references to the
rows that contain that value.

A database driver can use indexes to find rows quickly. An index on the emp_id field, for example, greatly
reduces the time that the driver spends searching for a particular employee ID value. Consider the following
Where clause:

WHERE EMP_id = 'E10001'

Without an index, the server must search the entire database table to find those rows having an employee ID
of E10001. By using an index on the emp_id field, however, the server can quickly find those rows.

Indexes may improve the performance of SQL statements.You may not notice this improvement with small
tables, but it can be significant for large tables; however, there can be disadvantages to having too many
indexes. Indexes can slow down the performance of some inserts, updates, and deletes when the driver has
to maintain the indexes as well as the database tables. Also, indexes take additional disk space.

Improving Row Selection Performance

For indexes to improve the performance of selections, the index expression must match the selection condition
exactly. For example, if you have created an index whose expression is last_name, the following Select
statement uses the index:

SELECT * FROM emp WHERE last_name = 'Smith'

This Select statement, however, does not use the index:

SELECT * FROM emp WHERE UPPER(last_name) = 'SMITH'

The second statement does not use the index because the Where clause contains UPPER(last_name), which
does not match the index expression last_name. If you plan to use the UPPER function in all your Select
statements and your database supports indexes on expressions, then you should define an index using the
expression UPPER(last_name).

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2264

Part I: Reference

Indexing Multiple Fields

If you often use Where clauses that involve more than one field, you may want to build an index containing
multiple fields. Consider the following Where clause:

WHERE last_name = 'Smith' AND first_name = 'Thomas'

For this condition, the optimal index field expression is last_name, first_name. This creates a concatenated
index.

Concatenated indexes can also be used for Where clauses that contain only the first of two concatenated fields.
The last_name, first_name index also improves the performance of the following Where clause (even though
no first name value is specified):

last_name = 'Smith'

Consider the following Where clause:

WHERE last_name = 'Smith' AND middle_name = 'Edward' AND first_name = 'Thomas'

If your index fields include all the conditions of the Where clause in that order, the driver can use the entire
index. If, however, your index is on two nonconsecutive fields, for example, last_name and first_name, the
driver can use only the last_name field of the index.

The driver uses only one index when processing Where clauses. If you have complex Where clauses that
involve a number of conditions for different fields and have indexes on more than one field, the driver chooses
an index to use. The driver attempts to use indexes on conditions that use the equal sign as the relational
operator rather than conditions using other operators (such as greater than). Assume you have an index on
the emp_id field as well as the last_name field and the following Where clause:

WHERE emp_id >= 'E10001' AND last_name = 'Smith'

In this case, the driver selects the index on the last_name field.

If no conditions have the equal sign, the driver first attempts to use an index on a condition that has a lower
and upper bound, and then attempts to use an index on a condition that has a lower or upper bound.The driver
always attempts to use the most restrictive index that satisfies the Where clause.

In most cases, the driver does not use an index if the Where clause contains an OR comparison operator. For
example, the driver does not use an index for the following Where clause:

WHERE emp_id >= 'E10001' OR last_name = 'Smith'

Deciding Which Indexes to Create

Before you create indexes for a database table, consider how you will use the table. The most common
operations on a table are:

• Inserting, updating, and deleting rows

• Retrieving rows

If you most often insert, update, and delete rows, then the fewer indexes associated with the table, the better
the performance. This is because the driver must maintain the indexes as well as the database tables, thus
slowing down the performance of row inserts, updates, and deletes. It may be more efficient to drop all indexes
before modifying a large number of rows, and re-create the indexes after the modifications.

265Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using Indexes

If you most often retrieve rows, you must look further to define the criteria for retrieving rows and create indexes
to improve the performance of these retrievals. Assume you have an employee database table and you will
retrieve rows based on employee name, department, or hire date.You would create three indexes—one on
the dept field, one on the hire_date field, and one on the last_name field. Or perhaps, for the retrievals based
on the name field, you would want an index that concatenates the last_name and the first_name fields (see
"Indexing Multiple Fields" for details).

Here are a few rules to help you decide which indexes to create:

• If your row retrievals are based on only one field at a time (for example, dept='D101'), create an index
on these fields.

• If your row retrievals are based on a combination of fields, look at the combinations.

• If the comparison operator for the conditions is And (for example, city = 'Raleigh' AND state =
'NC'), then build a concatenated index on the city and state fields. This index is also useful for retrieving
rows based on the city field.

• If the comparison operator is OR (for example, dept = 'D101' OR hire_date > {01/30/89}), an
index does not help performance. Therefore, you need not create one.

• If the retrieval conditions contain both AND and OR comparison operators, you can use an index if the OR
conditions are grouped. For example:

dept = 'D101' AND (hire_date > {01/30/89} OR exempt = 1)

In this case, an index on the dept field improves performance.

• If the AND conditions are grouped, an index does not improve performance. For example:

(dept = 'D101' AND hire_date) > {01/30/89}) OR exempt = 1

See also
Indexing Multiple Fields on page 265

Improving Join Performance

When joining database tables, index tables can greatly improve performance. Unless the proper indexes are
available, queries that use joins can take a long time.

Assume you have the following Select statement:
SELECT * FROM dept, emp WHERE dept.dept_id = emp.dept_id

In this example, the dept and emp database tables are being joined using the dept_id field. When the driver
executes a query that contains a join, it processes the tables from left to right and uses an index on the second
table’s join field (the dept field of the emp table). To improve join performance, you need an index on the join
field of the second table in the FROM clause.

If the FROM clause includes a third table, the driver also uses an index on the field in the third table that joins
it to any previous table. For example:

SELECT * FROM dept, emp, addr WHERE dept.dept_id = emp.dept AND emp.loc = addr.loc

In this case, you should have an index on the emp.dept field and the addr.loc field.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2266

Part I: Reference

8
Code Page Values

This chapter lists supported code page values, along with a description, for your driver.

For details, see the following topics:

• IANAAppCodePage Values

IANAAppCodePage Values

The following table lists supported code page values for the IANAAppCodePage connection option. See
"IANAAppCodePage" for information about this attribute.

To determine the correct numeric value (the MIBenum value) for the IANAAppCodePage connection string
attribute, perform the following steps:

1. Determine the code page of your database.

2. Determine the MIBenum value that corresponds to your database code page. To do this, go to:

http://www.iana.org/assignments/character-sets

On this web page, search for the name of your database code page. This name will be listed as an alias or
the name of a character set, and will have a MIBenum value associated with it.

3. Check the following table to make sure that the MIBenum value you looked up on the IANA Web page is
supported by your Progress DataDirect for ODBC driver. If the value is not listed, contact Progress Technical
Support to request support for that value.

267Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

http://www.iana.org/assignments/character-sets

Table 12: IANAAppCodePage Values

DescriptionValue (MIBenum)

US_ASCII3

ISO_8859_14

ISO_8859_25

ISO_8859_36

ISO_8859_47

ISO_8859_58

ISO_8859_69

ISO_8859_710

ISO_8859_811

ISO_8859_912

JIS_Encoding16

Shift_JIS17

EUC_JP18

ISO_646_IRV30

KS_C_560136

ISO_2022_KR37

EUC_KR38

ISO_2022_JP39

ISO_2022_JP_240

GB_2312_8057

ISO_2022_CN104

ISO_2022_CN_EXT105

ISO_8859_13109

ISO_8859_14110

ISO_8859_15111

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2268

Chapter 8: Code Page Values

DescriptionValue (MIBenum)

GBK113

HP_ROMAN82004

IBM8502009

IBM8522010

IBM4372011

IBM8622013

IBM-Thai2016

WINDOWS-31J2024

GB23122025

Big52026

MACINTOSH2027

IBM0372028

IBM0382029

IBM2732030

IBM2772033

IBM2782034

IBM2802035

IBM2842037

IBM2852038

IBM2902039

IBM2972040

IBM4202041

IBM4242043

IBM5002044

IBM8512045

IBM8552046

269Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

DescriptionValue (MIBenum)

IBM8572047

IBM8602048

IBM8612049

IBM8632050

IBM8642051

IBM8652052

IBM8682053

IBM8692054

IBM8702055

IBM8712056

IBM9182062

IBM10262063

KOI8_R2084

HZ_GB_23122085

IBM8662086

IBM7752087

IBM008582089

IBM011402091

IBM011412092

IBM011422093

IBM011432094

IBM011442095

IBM011452096

IBM011462097

IBM011472098

IBM011482099

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2270

Chapter 8: Code Page Values

DescriptionValue (MIBenum)

IBM011492100

IBM10472102

WINDOWS_12502250

WINDOWS_12512251

WINDOWS_12522252

WINDOWS_12532253

WINDOWS_12542254

WINDOWS_12552255

WINDOWS_12562256

WINDOWS_12572257

WINDOWS_12582258

TIS_6202259

IBM-9392000000939 8

IBM-943_P14A-20002000000943 8

IBM-10252000001025 8

IBM-43962000004396 8

IBM-50262000005026 8

IBM-50352000005035 8

See also
IANAAppCodePage on page 224
Contacting Technical Support on page 20

8 These values are assigned by Progress DataDirect and do not appear in http://www.iana.org/assignments/character-sets.

271Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2272

Chapter 8: Code Page Values

9
ODBC API and Scalar Functions

This chapter lists the ODBC API functions that your Progress DataDirect for ODBC driver supports. In addition,
it lists the scalar functions that you use in SQL statements.

For details, see the following topics:

• API Functions

• Scalar Functions

API Functions

Your Progress DataDirect for ODBC driver is Level 1 compliant, that is, it supports all ODBC Core and Level 1
functions. It also supports a limited set of Level 2 functions, as described in the following table.

273Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Table 13: Function Conformance for ODBC 2.x Applications

Level 2 FunctionsLevel 1 FunctionsCore Functions

SQLBrowseConnect

SQLDataSources

SQLDescribeParam9

SQLExtendedFetch (forward scrolling
only)

SQLMoreResults

SQLNativeSql

SQLNumParams

SQLParamOptions9

SQLSetScrollOptions

SQLColumns

SQLDriverConnect

SQLGetConnectOption

SQLGetData

SQLGetFunctions

SQLGetInfo

SQLGetStmtOption9

SQLGetTypeInfo

SQLParamData

SQLPutData

SQLSetConnectOption

SQLSetStmtOption9

SQLSpecialColumns

SQLStatistics

SQLTables

SQLAllocConnect9

SQLAllocEnv9

SQLAllocStmt9

SQLBindCol

SQLBindParameter

SQLCancel

SQLColAttributes

SQLConnect

SQLDescribeCol

SQLDisconnect

SQLDrivers

SQLError

SQLExecDirect

SQLExecute

SQLFetch

SQLFreeConnect9

SQLFreeEnv9

SQLFreeStmt

SQLGetCursorName

SQLNumResultCols

SQLPrepare

SQLRowCount

SQLSetCursorName

SQLTransact9

The functions for ODBC 3.x Applications that the driver supports are listed in the following table. Any additions
to these supported functions or differences in the support of specific functions are listed in "ODBC Compliance".

9 For macOS, this function is not supported by the iODBC driver manager; therefore, it cannot currently be executed by the driver.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2274

Chapter 9: ODBC API and Scalar Functions

Table 14: Function Conformance for ODBC 3.x Applications

SQLGetDescField

SQLGetDescRec

SQLGetDiagField

SQLGetDiagRec

SQLGetEnvAttr

SQLGetFunctions

SQLGetInfo

SQLGetStmtAttr

SQLGetTypeInfo

SQLMoreResults

SQLNativeSql

SQLNumParens

SQLNumResultCols

SQLParamData

SQLPrepare

SQLPutData

SQLRowCount

SQLSetConnectAttr

SQLSetCursorName

SQLSetDescField

SQLSetDescRec

SQLSetEnvAttr

SQLSetStmtAttr

SQLSpecialColumns

SQLStatistics

SQLTables

SQLTransact

SQLAllocHandle

SQLBindCol

SQLBindParameter

SQLBrowseConnect (except for Progress)

SQLBulkOperations

SQLCancel

SQLCloseCursor

SQLColAttribute

SQLColumns

SQLConnect

SQLCopyDesc

SQLDataSources

SQLDescribeCol

SQLDisconnect

SQLDriverConnect

SQLDrivers

SQLEndTran

SQLError

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLFetchScroll (forward scrolling only)

SQLFreeHandle

SQLFreeStmt

SQLGetConnectAttr

SQLGetCursorName

SQLGetData

See also
ODBC Compliance on page 34

275Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Scalar Functions

This section lists the scalar functions that ODBC supports.Your database system may not support all these
functions. Refer to the documentation for your database system to find out which functions are supported. Also,
depending on the driver that you are using, all the scalar functions may not be supported. To check which
scalar functions are supported by a driver, use the SQLGetInfo ODBC function.

You can use these scalar functions in SQL statements using the following syntax:

{fn scalar-function}

where scalar-function is one of the functions listed in the following tables. For example:

SELECT {fn UCASE(NAME)} FROM EMP

Table 15: Scalar Functions

System FunctionsTimedate FunctionsNumeric FunctionsString Functions

CURSESSIONIDCURDATEABSASCII

CURRENT_USERCURTIMEACOSBIT_LENGTH

DATABASEDATEDIFFASINCHAR

IDENTITYDAYNAMEATANCHAR_LENGTH

USERDAYOFMONTHATAN2CONCAT

DAYOFWEEKBITANDDIFFERENCE

DAYOFYEARBITORHEXTORAW

EXTRACTCEILINGINSERT

HOURCOSLCASE

MINUTECOTLEFT

MONTHDEGREESLENGTH

MONTHNAMEEXPLOCATE

NOWFLOORLOWER

QUARTERLOGLTRIM

SECONDLOG10OCTET_LENGTH

WEEKMODRAWTOHEX

YEARPIREPEAT

CURRENT_DATEPOWERREPLACE

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2276

Chapter 9: ODBC API and Scalar Functions

System FunctionsTimedate FunctionsNumeric FunctionsString Functions

CURRENT_TIMERADIANSRIGHT

CURRENT_
TIMESTAMP

RANDRTRIM

ROUNDSOUNDEX

ROUNDMAGICSPACE

SIGNSUBSTR

SINSUBSTRING

SQRTUCASE

TANUPPER

TRUNCATE

String Functions
The following table lists the string functions that ODBC supports.

The string functions listed accept the following arguments:

• string_exp can be the name of a column, a string literal, or the result of another scalar function, where
the underlying data type is SQL_CHAR, SQL_VARCHAR, or SQL_LONGVARCHAR.

• start, length, and count can be the result of another scalar function or a literal numeric value, where
the underlying data type is SQL_TINYINT, SQL_SMALLINT, or SQL_INTEGER.

The string functions are one-based; that is, the first character in the string is character 1.

Character string literals must be surrounded in single quotation marks.

Table 16: Scalar String Functions

ReturnsFunction

ASCII code value of the leftmost character of string_exp as an integer.ASCII(string_exp)

The length in bits of the string expression.BIT_LENGTH(string_exp)

[ODBC 3.0 only]

The character with the ASCII code value specified by code. code should be
between 0 and 255; otherwise, the return value is data-source dependent.

CHAR(code)

The length in characters of the string expression, if the string expression is of a
character data type; otherwise, the length in bytes of the string expression (the
smallest integer not less than the number of bits divided by 8). (This function is
the same as the CHARACTER_LENGTH function.)

CHAR_LENGTH(string_exp)

[ODBC 3.0 only]

277Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

ReturnsFunction

The length in characters of the string expression, if the string expression is of a
character data type; otherwise, the length in bytes of the string expression (the
smallest integer not less than the number of bits divided by 8). (This function is
the same as the CHAR_LENGTH function.)

CHARACTER_LENGTH(string_exp)
[ODBC 3.0 only]

The string resulting from concatenating string_exp2 and string_exp1.The
string is system dependent.

CONCAT(string_exp1, string_exp2)

An integer value that indicates the difference between the values returned by
the SOUNDEX function for string_exp1 and string_exp2.

DIFFERENCE(string_exp1,
string_exp2)

A string where length characters have been deleted from string_exp1
beginning at start and where string_exp2 has been inserted into
string_exp beginning at start.

INSERT(string_exp1, start, length,
string_exp2)

Uppercase characters in string_exp converted to lowercase.LCASE(string_exp)

The count of characters of string_exp.LEFT(string_exp,count)

The number of characters in string_exp, excluding trailing blanks and the
string termination character.

LENGTH(string_exp)

The starting position of the first occurrence of string_exp1 within
string_exp2. If start is not specified, the search begins with the first character
position in string_exp2. If start is specified, the search begins with the
character position indicated by the value of start. The first character position
in string_exp2 is indicated by the value 1. If string_exp1 is not found, 0 is
returned.

LOCATE(string_exp1,
string_exp2[,start])

The characters of string_exp with leading blanks removed.LTRIM(string_exp)

The length in bytes of the string expression. The result is the smallest integer
not less than the number of bits divided by 8.

OCTET_LENGTH(string_exp)

[ODBC 3.0 only]

The position of the first character expression in the second character expression.
The result is an exact numeric with an implementation-defined precision and a
scale of 0.

POSITION(character_exp IN
character_exp)

[ODBC 3.0 only]

A string composed of string_exp repeated count times.REPEAT(string_exp, count)

Replaces all occurrences of string_exp2 in string_exp1 with string_exp3.REPLACE(string_exp1, string_exp2,
string_exp3)

The rightmost count of characters in string_exp.RIGHT(string_exp, count)

The characters of string_exp with trailing blanks removed.RTRIM(string_exp)

A data source dependent string representing the sound of the words in
string_exp.

SOUNDEX(string_exp)

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2278

Chapter 9: ODBC API and Scalar Functions

ReturnsFunction

A string consisting of count spaces.SPACE(count)

A string derived from string_exp beginning at the character position start
for length characters.

SUBSTRING(string_exp, start,
length)

Lowercase characters in string_exp converted to uppercase.UCASE(string_exp)

Numeric Functions
The following table lists the numeric functions that ODBC supports.

The numeric functions listed accept the following arguments:

• numeric_exp can be a column name, a numeric literal, or the result of another scalar function, where the
underlying data type is SQL_NUMERIC, SQL_DECIMAL, SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER,
SQL_BIGINT, SQL_FLOAT, SQL_REAL, or SQL_DOUBLE.

• float_exp can be a column name, a numeric literal, or the result of another scalar function, where the
underlying data type is SQL_FLOAT.

• integer_exp can be a column name, a numeric literal, or the result of another scalar function, where the
underlying data type is SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER, or SQL_BIGINT.

Table 17: Scalar Numeric Functions

ReturnsFunction

Absolute value of numeric_exp.ABS(numeric_exp)

Arccosine of float_exp as an angle in radians.ACOS(float_exp)

Arcsine of float_exp as an angle in radians.ASIN(float_exp)

Arctangent of float_exp as an angle in radians.ATAN(float_exp)

Arctangent of the x and y coordinates, specified by float_exp1 and
float_exp2 as an angle in radians.

ATAN2(float_exp1, float_exp2)

Smallest integer greater than or equal to numeric_exp.CEILING(numeric_exp)

Cosine of float_exp as an angle in radians.COS(float_exp)

Cotangent of float_exp as an angle in radians.COT(float_exp)

Number if degrees converted from numeric_exp radians.DEGREES(numeric_exp)

Exponential value of float_exp.EXP(float_exp)

Largest integer less than or equal to numeric_exp.FLOOR(numeric_exp)

Natural log of float_exp.LOG(float_exp)

279Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

ReturnsFunction

Base 10 log of float_exp.LOG10(float_exp)

Remainder of integer_exp1 divided by integer_exp2.MOD(integer_exp1, integer_exp2)

Constant value of pi as a floating-point number.PI()

Value of numeric_exp to the power of integer_exp.POWER(numeric_exp, integer_exp)

Number of radians converted from numeric_exp degrees.RADIANS(numeric_exp)

Random floating-point value using integer_exp as the optional seed
value.

RAND([integer_exp])

numeric_exp rounded to integer_exp places right of the decimal (left
of the decimal if integer_exp is negative).

ROUND(numeric_exp, integer_exp)

Indicator of the sign of numeric_exp. If numeric_exp < 0, -1 is returned.
If numeric_exp = 0, 0 is returned. If numeric_exp > 0, 1 is returned.

SIGN(numeric_exp)

Sine of float_exp, where float_exp is an angle in radians.SIN(float_exp)

Square root of float_exp.SQRT(float_exp)

Tangent of float_exp, where float_exp is an angle in radians.TAN(float_exp)

numeric_exp truncated to integer_exp places right of the decimal. (If
integer_exp is negative, truncation is to the left of the decimal.)

TRUNCATE(numeric_exp, integer_exp)

Date and Time Functions
The following table lists the date and time functions that ODBC supports.

The date and time functions listed accept the following arguments:

• date_exp can be a column name, a date or timestamp literal, or the result of another scalar function, where
the underlying data type can be represented as SQL_CHAR, SQL_VARCHAR, SQL_DATE, or
SQL_TIMESTAMP.

• time_exp can be a column name, a timestamp or timestamp literal, or the result of another scalar function,
where the underlying data type can be represented as SQL_CHAR, SQL_VARCHAR, SQL_TIME, or
SQL_TIMESTAMP.

• timestamp_exp can be a column name; a time, date, or timestamp literal; or the result of another scalar
function, where the underlying data type can be represented as SQL_CHAR, SQL_VARCHAR, SQL_TIME,
SQL_DATE, or SQL_TIMESTAMP.

Table 18: Scalar Time and Date Functions

ReturnsFunction

Current date.CURRENT_DATE()

[ODBC 3.0 only]

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2280

Chapter 9: ODBC API and Scalar Functions

ReturnsFunction

Current local time. The time-precision argument
determines the seconds precision of the returned value.

CURRENT_TIME[(time-precision)]

[ODBC 3.0 only]

Current local date and local time as a timestamp value.
The timestamp-precision argument determines the
seconds precision of the returned timestamp.

CURRENT_TIMESTAMP([timestamp-precision])

[ODBC 3.0 only]

Current date as a date value.CURDATE()

Current local time as a time value.CURTIME()

Character string containing a data-source-specific name
of the day for the day portion of date_exp.

DAYNAME(date_exp)

Day of the month in date_exp as an integer value (1–31).DAYOFMONTH(date_exp)

Day of the week in date_exp as an integer value (1–7).DAYOFWEEK(date_exp)

Day of the year in date_exp as an integer value (1–366).DAYOFYEAR(date_exp)

Any of the date and time terms can be extracted from
datetime_value.

EXTRACT({YEAR | MONTH | DAY | HOUR | MINUTE |
SECOND} FROM datetime_value)

Hour in time_exp as an integer value (0–23).HOUR(time_exp)

Minute in time_exp as an integer value (0–59).MINUTE(time_exp)

Month in date_exp as an integer value (1–12).MONTH(date_exp)

Character string containing the data source-specific name
of the month.

MONTHNAME(date_exp)

Current date and time as a timestamp value.NOW()

Quarter in date_exp as an integer value (1–4).QUARTER(date_exp)

Second in date_exp as an integer value (0–59).SECOND(time_exp)

281Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

ReturnsFunction

Timestamp calculated by adding integer_exp intervals
of type interval to time_exp. interval can be one of the
following values:

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

Fractional seconds are expressed in billionths of a
second.

TIMESTAMPADD(interval, integer_exp, time_exp)

Integer number of intervals of type interval by which
time_exp2 is greater than time_exp1. interval has the
same values as TIMESTAMPADD. Fractional seconds
are expressed in billionths of a second.

TIMESTAMPDIFF(interval, time_exp1, time_exp2)

Week of the year in date_exp as an integer value (1–53).WEEK(date_exp)

Year in date_exp. The range is data-source dependent.YEAR(date_exp)

System Functions
The following table lists the system functions that ODBC supports.

Table 19: Scalar System Functions

ReturnsFunction

Name of the database, corresponding to the connection handle (hdbc).DATABASE()

value, if exp is null.IFNULL(exp,value)

Authorization name of the user.USER()

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2282

Chapter 9: ODBC API and Scalar Functions

10
Internationalization, Localization, and
Unicode

This chapter provides an overview of how internationalization, localization, and Unicode relate to each other.
It also provides a background on Unicode, and how it is accommodated by Unicode and non-Unicode ODBC
drivers.

For details, see the following topics:

• Internationalization and Localization

• Unicode Character Encoding

• Unicode and Non-Unicode ODBC Drivers

• Driver Manager and Unicode Encoding on UNIX/Linux

• Character Encoding in the odbc.ini and odbcinst.ini Files

Internationalization and Localization

Software that has been designed for internationalization is able to manage different linguistic and cultural
conventions transparently and without modification. The same binary copy of an application should run on any
localized version of an operating system without requiring source code changes.

Software that has been designed for localization includes language translation (such as text messages, icons,
and buttons), cultural data (such as dates, times, and currency), and other components (such as input methods
and spell checkers) for meeting regional market requirements.

283Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Properly designed applications can accommodate a localized interface without extensive modification. The
applications can be designed, first, to run internationally, and, second, to accommodate the language- and
cultural-specific elements of a designated locale.

Locale
A locale represents the language and cultural data chosen by the user and dynamically loaded into memory
at runtime. The locale settings are applied to the operating system and to subsequent application launches.

While language is a fairly straightforward item, cultural data is a little more complex. Dates, numbers, and
currency are all examples of data that is formatted according to cultural expectations. Because cultural
preferences are bound to a geographic area, country is an important element of locale. Together these two
elements (language and country) provide a precise context in which information can be presented. Locale
presents information in the language and form that is best understood and appreciated by the local user.

Language
A locale's language is specified by the ISO 639 standard. The following table lists some commonly used
language codes.

LanguageLanguage Code

Englishen

Dutchnl

Frenchfr

Spanishes

Chinesezh

Japaneseja

Vietnamesevi

Because language is correlated with geography, a language code might not capture all the nuances of usage
in a particular area. For example, French and Canadian French may use different phrases and terms to mean
different things even though basic grammar and vocabulary are the same. Language is only one element of
locale.

Country
The locale's country identifier is also specified by an ISO standard, ISO 3166, which describes valid two-letter
codes for all countries. ISO 3166 defines these codes in uppercase letters. The following table lists some
commonly used country codes.

CountryCountry Code

United StatesUS

FranceFR

IrelandIE

CanadaCA

MexicoMX

The country code provides more contextual information for a locale and affects a language's usage, word
spelling, and collation rules.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2284

Chapter 10: Internationalization, Localization, and Unicode

Variant
A variant is an optional extension to a locale. It identifies a custom locale that is not possible to create with just
language and country codes. Variants can be used by anyone to add additional context for identifying a locale.
The locale en_US represents English (United States), but en_US_CA represents even more information and
might identify a locale for English (California, U.S.A). Operating system or software vendors can use these
variants to create more descriptive locales for their specific environments.

Unicode Character Encoding

In addition to locale, the other major component of internationalizing software is the use of the Universal
Codeset, or Unicode. Most developers know that Unicode is a standard encoding that can be used to support
multilingual character sets. Unfortunately, understanding Unicode is not as simple as its name would indicate.
Software developers have used a number of character encodings, from ASCII to Unicode, to solve the many
problems that arise when developing software applications that can be used worldwide.

Background
Most legacy computing environments have used ASCII character encoding developed by the ANSI standards
body to store and manipulate character strings inside software applications. ASCII encoding was convenient
for programmers because each ASCII character could be stored as a byte. The initial version of ASCII used
only 7 of the 8 bits available in a byte, which meant that applications could use only 128 different characters.
This version of ASCII could not account for European characters and was completely inadequate for Asian
characters. Using the eighth bit to extend the total range of characters to 256 added support for most European
characters. Today, ASCII refers to either the 7-bit or 8-bit encoding of characters.

As the need increased for applications with additional international support, ANSI again increased the functionality
of ASCII by developing an extension to accommodate multilingual software. The extension, known as the
Double-Byte Character Set (DBCS), allowed existing applications to function without change, but provided for
the use of additional characters, including complex Asian characters. With DBCS, characters map to either
one byte (for example, American ASCII characters) or two bytes (for example, Asian characters). The DBCS
environment also introduced the concept of an operating system code page that identified how characters
would be encoded into byte sequences in a particular computing environment. DBCS encoding provided a
cross-platform mechanism for building multilingual applications.

The DataDirect for ODBC UNIX, Linux, and macOS drivers can use double-byte character sets. The drivers
normally use the character set defined by the default locale "C" unless explicitly pointed to another character
set. The default locale "C" corresponds to the 7-bit US-ASCII character set. Use the following procedure to set
the locale to a different character set:

1. Add the following line at the beginning of applications that use double-byte character sets:

setlocale (LC_ALL, "");

This is a standard function for UNIX-based platforms. It selects the character set indicated by the environment
variable LANG as the one to be used by X/Open compliant, character-handling functions. If this line is not
present, or if LANG is not set or is set to NULL, the default locale "C" is used.

2. Set the LANG environment variable to the appropriate character set. The command locale -a can be
used to display all supported character sets on your system.

For more information, refer to the man pages for "locale" and "setlocale."

285Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Using a DBCS, however, was not ideal; many developers felt that there was a better way to solve the problem.
A group of leading software companies joined forces to form the Unicode Consortium.Together, they produced
a new solution to building worldwide applications—Unicode. Unicode was originally designed as a fixed-width,
uniform two-byte designation that could represent all modern scripts without the use of code pages.The Unicode
Consortium has continued to evaluate new characters, and the current number of supported characters is over
109,000.

Although it seemed to be the perfect solution to building multilingual applications, Unicode started off with a
significant drawback—it would have to be retrofitted into existing computing environments. To use the new
paradigm, all applications would have to change. As a result, several standards-based transliterations were
designed to convert two-byte fixed Unicode values into more appropriate character encodings, including, among
others, UTF-8, UCS-2, UTF-16, and UTF-32.

UTF-8 is a standard method for transforming Unicode values into byte sequences that maintain transparency
for all ASCII codes. UTF-8 is recognized by the Unicode Consortium as a mechanism for transforming Unicode
values and is popular for use with HTML, XML, and other protocols. UTF-8 is, however, currently used primarily
on AIX, HP-UX, Solaris, and Linux.

UCS-2 encoding is a fixed, two-byte encoding sequence and is a method for transforming Unicode values into
byte sequences. It is the standard for Windows 95, Windows 98, Windows Me, and Windows NT.

UTF-16 is a superset of UCS-2, with the addition of some special characters in surrogate pairs. UTF-16 is the
standard encoding for Windows 7 and higher. Microsoft recommends using UTF-16 for new applications.

UTF-32 encoding is a fixed-width, 4 byte method for transforming Unicode values into byte sequences. It is
capable of defining all Unicode characters and is common for macOS platforms.

See "Unicode Support" to determine which encoding formats your driver supports.

See also
Unicode Support on page 51

Unicode Support in Databases
Recently, database vendors have begun to support Unicode data types natively in their systems. With Unicode
support, one database can hold multiple languages. For example, a large multinational corporation could store
expense data in the local languages for the Japanese, U.S., English, German, and French offices in one
database.

Not surprisingly, the implementation of Unicode data types varies from vendor to vendor. For example, the
Microsoft SQL Server 2000 implementation of Unicode provides data in UTF-16 format, while Oracle provides
Unicode data types in UTF-8 and UTF-16 formats. A consistent implementation of Unicode not only depends
on the operating system, but also on the database itself.

Unicode Support in ODBC
Prior to the ODBC 3.5 standard, all ODBC access to function calls and string data types was through ANSI
encoding (either ASCII or DBCS). Applications and drivers were both ANSI-based.

The ODBC 3.5 standard specified that the ODBC Driver Manager be capable of mapping both Unicode function
calls and string data types to ANSI encoding as transparently as possible.This meant that ODBC 3.5-compliant
Unicode applications could use Unicode function calls and string data types with ANSI drivers because the
Driver Manager could convert them to ANSI. Because of character limitations in ANSI, however, not all
conversions are possible.

The ODBC Driver Manager version 3.5 and later, therefore, supports the following configurations:

• ANSI application with an ANSI driver

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2286

Chapter 10: Internationalization, Localization, and Unicode

• ANSI application with a Unicode driver

• Unicode application with a Unicode driver

• Unicode application with an ANSI driver

A Unicode application can work with an ANSI driver because the Driver Manager provides limited
Unicode-to-ANSI mapping. The Driver Manager makes it possible for a pre-3.5 ANSI driver to work with a
Unicode application. What distinguishes a Unicode driver from a non-Unicode driver is the Unicode driver's
capacity to interpret Unicode function calls without the intervention of the Driver Manager, as described in the
following section.

Unicode and Non-Unicode ODBC Drivers

The way in which a driver handles function calls from a Unicode application determines whether it is considered
a "Unicode driver."

Function Calls
Instead of the standard ANSI SQL function calls, such as SQLConnect, Unicode applications use "W" (wide)
function calls, such as SQLConnectW. If the driver is a true Unicode driver, it can understand "W" function
calls and the Driver Manager can pass them through to the driver without conversion to ANSI. The Progress
DataDirect for ODBC for Oracle Wire Protocol Driver supports "W" function calls.

If a driver is a non-Unicode driver, it cannot understand W function calls, and the Driver Manager must convert
them to ANSI calls before sending them to the driver. The Driver Manager determines the ANSI encoding
system to which it must convert by referring to a code page. On Windows, this reference is to the Active Code
Page. On non-Windows platforms, it is to the IANAAppCodePage connection string attribute, part of the
odbc.ini file.

The following examples illustrate these conversion streams for the Progress DataDirect for ODBC drivers. The
Driver Manager on UNIX and Linux determines the type of Unicode encoding of both the application and the
driver, and performs conversions when the application and driver use different types of encoding. This
determination is made by checking two ODBC attributes: SQL_ATTR_APP_UNICODE_TYPE and
SQL_ATTR_DRIVER_UNICODE_TYPE, which can be set for either the environment, using SQLSetEnvAttr,
or the connection, using SQLSetConnectAttr. "Driver Manager and Unicode Encoding on UNIX/Linux" describes
in detail how this is done.

See also
Driver Manager and Unicode Encoding on UNIX/Linux on page 291

Unicode Application with a Non-Unicode Driver

An operation involving a Unicode application and a non-Unicode driver incurs more overhead because function
conversion is involved.

Windows

1. The Unicode application sends UCS-2/UTF-16 function calls to the Driver Manager.

2. The Driver Manager converts the function calls from UCS-2/UTF-16 to ANSI.The type of ANSI is determined
by the Driver Manager through reference to the client machine’s Active Code Page.

3. The Driver Manager sends the ANSI function calls to the non-Unicode driver.

287Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

4. The driver returns ANSI argument values to the Driver Manager.

5. The Driver Manager converts the function calls from ANSI to UCS-2/UTF-16 and returns these converted
calls to the application.

 UNIX and Linux

1. The Unicode application sends function calls to the Driver Manager. The Driver Manager expects the string
arguments in these function calls to be UTF-8 or UTF-16 based on the value of the
SQL_ATTR_APP_UNICODE_TYPE attribute. Note that the SQL_ATTR_APP_UNICODE_TYPE attribute
can be set for the environment, using SQLSetEnvAttr, or the connection, using SQLSetConnectAttr.

2. The Driver Manager converts the function calls from UTF-8 or UTF-16 to ANSI. The type of ANSI is
determined by the Driver Manager through reference to the client machine’s value for the IANAAppCodePage
connection string attribute.

3. The Driver Manager sends the converted ANSI function calls to the non-Unicode driver.

4. The driver returns ANSI argument values to the Driver Manager.

5. The Driver Manager converts the function calls from ANSI to UTF-8 or UTF-16 and returns these converted
calls to the application.

 macOS
On macOS, this scenario does not apply. All currently available drivers are Unicode drivers.

Unicode Application with a Unicode Driver

An operation involving a Unicode application and a Unicode driver that use the same Unicode encoding is
efficient because no function conversion is involved. If the application and the driver each use different types
of encoding, there is some conversion overhead. See "Driver Manager and Unicode Encoding on UNIX/Linux"
for details.

Windows

1. The Unicode application sends UCS-2 or UTF-16 function calls to the Driver Manager.

2. The Driver Manager does not have to convert the UCS-2/UTF-16 function calls to ANSI. It passes the
Unicode function call to the Unicode driver.

3. The driver returns UCS-2/UTF-16 argument values to the Driver Manager.

4. The Driver Manager returns UCS-2/UTF-16 function calls to the application.

 UNIX and Linux

1. The Unicode application sends function calls to the Driver Manager. The Driver Manager expects the string
arguments in these function calls to be UTF-8 or UTF-16 based on the value of the
SQL_ATTR_APP_UNICODE_TYPE attribute. Note that the SQL_ATTR_APP_UNICODE_TYPE attribute
can be set for the environment, using SQLSetEnvAttr, or the connection, using SQLSetConnectAttr.

2. The Driver Manager passes Unicode function calls to the Unicode driver.The Driver Manager has to perform
function call conversions if the SQL_ATTR_APP_UNICODE_TYPE is different from the
SQL_ATTR_DRIVER_UNICODE_TYPE.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2288

Chapter 10: Internationalization, Localization, and Unicode

3. The driver returns argument values to the Driver Manager. Whether these are UTF-8 or UTF-16 argument
values is based on the value of the SQL_ATTR_DRIVER_UNICODE_TYPE attribute.

4. The Driver Manager returns appropriate function calls to the application based on the
SQL_ATTR_APP_UNICODE_TYPE attribute value. The Driver Manager has to perform function call
conversions if the SQL_ATTR_DRIVER_UNICODE_TYPE value is different from the
SQL_ATTR_APP_UNICODE_TYPE value.

 macOS

1. The Unicode application sends UTF-32 function calls to the Driver Manager.

2. The Driver Manager does not have to convert the UTF-32 function calls to ANSI. It passes the Unicode
function call to the Unicode driver.

3. The driver returns UTF-32 argument values to the Driver Manager.

4. The Driver Manager returns UTF-32 function calls to the application.

See also
Driver Manager and Unicode Encoding on UNIX/Linux on page 291

Data
ODBC C data types are used to indicate the type of C buffers that store data in the application. This is in
contrast to SQL data types, which are mapped to native database types to store data in a database (data store).
ANSI applications bind to the C data type SQL_C_CHAR and expect to receive information bound in the same
way. Similarly, most Unicode applications bind to the C data type SQL_C_WCHAR (wide data type) and expect
to receive information bound in the same way. Any ODBC 3.5-compliant Unicode driver must be capable of
supporting SQL_C_CHAR and SQL_C_WCHAR so that it can return data to both ANSI and Unicode applications.

When the driver communicates with the database, it must use ODBC SQL data types, such as SQL_CHAR
and SQL_WCHAR, that map to native database types. In the case of ANSI data and an ANSI database, the
driver receives data bound to SQL_C_CHAR and passes it to the database as SQL_CHAR. The same is true
of SQL_C_WCHAR and SQL_WCHAR in the case of Unicode data and a Unicode database.

When data from the application and the data stored in the database differ in format, for example, ANSI application
data and Unicode database data, conversions must be performed. The driver cannot receive SQL_C_CHAR
data and pass it to a Unicode database that expects to receive a SQL_WCHAR data type. The driver or the
Driver Manager must be capable of converting SQL_C_CHAR to SQL_WCHAR, and vice versa.

The simplest cases of data communication are when the application, the driver, and the database are all of
the same type and encoding, ANSI-to-ANSI-to-ANSI or Unicode-to-Unicode-to-Unicode. There is no data
conversion involved in these instances.

When a difference exists between data types, a conversion from one type to another must take place at the
driver or Driver Manager level, which involves additional overhead. The type of driver determines whether
these conversions are performed by the driver or the Driver Manager. "Driver Manager and Unicode Encoding
on UNIX/Linux" describes how the Driver Manager determines the type of Unicode encoding of the application
and driver.

The following sections discuss two basic types of data conversion in the Progress DataDirect for ODBC driver
and the Driver Manager. How an individual driver exchanges different types of data with a particular database
at the database level is beyond the scope of this discussion.

See also
Driver Manager and Unicode Encoding on UNIX/Linux on page 291

289Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Unicode Driver

The Unicode driver, not the Driver Manager, must convert SQL_C_CHAR (ANSI) data to SQL_WCHAR
(Unicode) data, and vice versa, as well as SQL_C_WCHAR (Unicode) data to SQL_CHAR (ANSI) data, and
vice versa.

The driver must use client code page information (Active Code Page on Windows and IANAAppCodePage
attribute on UNIX/Linux/macOS) to determine which ANSI code page to use for the conversions. The Active
Code Page or IANAAppCodePage must match the database default character encoding; if it does not, conversion
errors are possible.

ANSI Driver

The Driver Manager, not the ANSI driver, must convert SQL_C_WCHAR (Unicode) data to SQL_CHAR (ANSI)
data, and vice versa (see "Unicode Support in ODBC" for a detailed discussion). This is necessary because
ANSI drivers do not support any Unicode ODBC types.

The Driver Manager must use client code page information (Active Code Page on Windows and the
IANAAppCodePage attribute on UNIX/Linux/macOS) to determine which ANSI code page to use for the
conversions.The Active Code Page or IANAAppCodePage must match the database default character encoding.
If not, conversion errors are possible.

See also
Unicode Support in ODBC on page 286

Default Unicode Mapping
The following table shows the default Unicode mapping for an application’s SQL_C_WCHAR variables.

Default Unicode MappingPlatform

UCS-2/UTF-16Windows

UTF-8AIX

UTF-8HP-UX

UTF-8Solaris

UTF-8Linux

UTF-32macOS

Connection Attribute for Unicode

If you do not want to use the default Unicode mappings for SQL_C_WCHAR, a connection attribute is available
to override the default mappings. This attribute determines how character data is converted and presented to
an application and the database.

DescriptionAttribute

Sets the SQL_C_WCHAR type for parameter and
column binding to the Unicode type, either

SQL_ATTR_APP_WCHAR_TYPE (1061)

SQL_DD_CP_UTF16 (default for Windows) or
SQL_DD_CP_UTF8 (default for UNIX/Linux).

You can set this attribute before or after you connect. After this attribute is set, all conversions are made based
on the character set specified.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2290

Chapter 10: Internationalization, Localization, and Unicode

For example:

rc = SQLSetConnectAttr (hdbc, SQL_ATTR_APP_WCHAR_TYPE,
(void *)SQL_DD_CP_UTF16, SQL_IS_INTEGER);

SQLGetConnectAttr and SQLSetConnectAttr for the SQL_ATTR_APP_WCHAR_TYPE attribute return a SQL
State of HYC00 for drivers that do not support Unicode.

This connection attribute and its valid values can be found in the file qesqlext.h, which is installed with the
product.

Note: On Mac Platforms, the iODBC Driver Manager supports only UTF-32. As a result, this attribute is not
currently supported.

Driver Manager and Unicode Encoding on UNIX/Linux

 Unicode ODBC drivers on UNIX and Linux can use UTF-8 or UTF-16 encoding. To use a single
UTF-8 or UTF-16 application with either a UTF-8 or UTF-16 driver, the Driver Manager must be able to determine
with which type of encoding the application and driver use and, if necessary, convert them accordingly.

To make this determination, the Driver Manager supports a set of ODBC attributes that can be set for the
environment or the connection. If your application uses both UTF-8 and UTF-16 drivers in the same environment,
encoding should be set for the connection only; otherwise, either method can be used.

• To configure the encoding type for the environment, set the ODBC environment attributes
SQL_ATTR_APP_UNICODE_TYPE and SQL_ATTR_DRIVER_UNICODE_TYPE using SQLSetEnvAttr.

• To configure the encoding for the connection only, set the ODBC connection attribute
SQL_ATTR_APP_UNICODE_TYPE and SQL_ATTR_DRIVER_UNICODE_TYPE using SQLSetConnectAttr.

The attributes support values of SQL_DD_CP_UTF8 and SQL_DD_CP_UTF16. The default value is
SQL_DD_CP_UTF8.

Note: You must specify a value for SQL_ATTR_DRIVER_UNICODE_TYPE when using third-party drivers.
However, for DataDirect drivers, the driver manager detects the Unicode type for the driver by default.

The Driver Manager performs the following steps before actually connecting to the driver.

1. Determine the application Unicode type: Applications that use UTF-16 encoding for their string types need
to set SQL_ATTR_APP_UNICODE_TYPE accordingly at connection, or, if setting the encoding type for
the environment, before connecting to any driver. When the Driver Manager reads this attribute, it expects
all string arguments to the ODBC "W" functions to be in the specified Unicode format. This attribute also
indicates how the SQL_C_WCHAR buffers must be encoded.

2. Determine the driver Unicode type: The Driver Manager must determine through which Unicode encoding
the driver supports its "W" functions. This is done as follows:

a. SQLGetEnvAttr(SQL_ATTR_DRIVER_UNICODE_TYPE) or SQLGetConnectATTR
(SQL_ATTR_DRIVER_UNICODE_TYPE) is called in the driver by the Driver Manager. The driver, if
capable, returns either SQL_DD_CP_UTF16 or SQL_DD_CP_UTF8 to indicate to the Driver Manager
which encoding it expects.

b. If the preceding call to SQLGetEnvAttr fails, the Driver Manager looks either in the Data Source section
of the odbc.ini specified by the connection string or in the connection string itself for a connection

291Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

option named DriverUnicodeType. Valid values for this option are 1 (UTF-16) or 2 (UTF-8). The Driver
Manager assumes that the Unicode encoding of the driver corresponds to the value specified.

c. If neither of the preceding attempts are successful, the Driver Manager assumes that the Unicode
encoding of the driver is UTF-8.

3. Determine if the driver supports SQL_ATTR_WCHAR_TYPE: SQLSetConnectAttr
(SQL_ATTR_WCHAR_TYPE, x) is called in the driver by the Driver Manager, where x is either
SQL_DD_CP_UTF8 or SQL_DD_CP_UTF16, depending on the value of the
SQL_ATTR_APP_UNICODE_TYPE setting. If the driver returns any error on this call to SQLSetConnectAttr,
the Driver Manager assumes that the driver does not support this connection attribute.

If an error occurs, the Driver Manager returns a warning. The Driver Manager does not convert all bound
parameter data from the application Unicode type to the driver Unicode type specified by
SQL_ATTR_DRIVER_UNICODE_TYPE. Neither does it convert all data bound as SQL_C_WCHAR to the
application Unicode type specified by SQL_ATTR_APP_UNICODE_TYPE.

Based on the information it has gathered prior to connection, the Driver Manager either does not have to convert
function calls, or, before calling the driver, it converts to either UTF-8 or UTF-16 all string arguments to calls
to the ODBC "W" functions.

References
The Java Tutorials, http://docs.oracle.com/javase/tutorial/i18n/index.html

Unicode Support in the Solaris Operating Environment, May 2000, Sun Microsystems, Inc., 901 San Antonio
Road, Palo Alto, CA 94303-4900

Character Encoding in the odbc.ini and odbcinst.ini Files

The odbc.ini and odbcinst.ini files can use ANSI or UTF-8 encoding. To ensure encoding
compatibility between these files and the application, the Driver Manager converts encoding when necessary.
This allows applications with different encoding to write to or read from the odbc.ini or odbcinst.ini file
using the following functions:

ANSI functions:

• SQLWritePrivateProfileString

• SQLGetPrivateProfileString

Unicode (wide or "W") functions:

• SQLWritePrivateProfileStringW

• SQLGetPrivateProfileStringW

For the Driver Manager to accomplish this task, it must determine the encoding format your application and
file use. How the Driver Manager makes this determination is dependent on the encoding of the function called
by the application.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2292

Chapter 10: Internationalization, Localization, and Unicode

http://docs.oracle.com/javase/tutorial/i18n/index.html

When a Unicode function is called, the Driver Manager assumes that the odbc.ini and odbcinst.ini files
use UTF-8 encoding, while encoding for the application is determined by the ODBC_App_Unicode_Type
variable in the system environment:

• If the variable is set to ODBC_App_Unicode_Type=1, the Driver Manager expects that application uses
input and output strings encoded as UTF-16. When the application calls SQLWritePrivateProfileStringW,
the Driver Manager converts UTF-16 input strings and writes them as UTF-8 in the file.When the application
calls SQLGetPrivateProfileStringW, the Driver Manager returns the requested values using UTF-16 encoding.

• If any other value is specified for ODBC_App_Unicode_Type, or if the variable is not defined, the Driver
Manager assumes that the application and file use UTF-8. When this occurs, the Driver Manager does not
convert strings passed between the application and file.

When an ANSI function is called, the Driver Manager assumes that application and file use ANSI encoding. In
this scenario, the Driver Manger does not convert strings passed between the application and file.

For more information about the odbc.ini and odbcinst.ini files, see "Configuring the Product on
UNIX/Linux."

See also
Configuring the Product on UNIX/Linux on page 56

293Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2294

Chapter 10: Internationalization, Localization, and Unicode

11
Designing ODBC Applications for
Performance Optimization

Developing performance-oriented ODBC applications is not easy. Microsoft’s ODBC Programmer’s Reference
does not provide information about system performance. In addition, ODBC drivers and the ODBC driver
manager do not return warnings when applications run inefficiently. This chapter contains some general
guidelines that have been compiled by examining the ODBC implementations of numerous shipping ODBC
applications. These guidelines include:

• Use catalog functions appropriately

• Retrieve only required data

• Select functions that optimize performance

• Manage connections and updates

Following these general rules will help you solve some common ODBC performance problems, such as those
listed in the following table.

Table 20: Common Performance Problems Using ODBC Applications

See guidelines in...SolutionProblem

"Using Catalog Functions"Reduce network traffic.Network communication is slow.

"Using Catalog Functions"

"Selecting ODBC Functions"

Simplify queries.The process of evaluating complex
SQL queries on the database server
is slow and can reduce concurrency.

295Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

See guidelines in...SolutionProblem

"Retrieving Data"

"Selecting ODBC Functions"

Optimize
application-to-driver
interaction.

Excessive calls from the application
to the driver slow performance.

"Managing Connections and Updates"Limit disk input/output.Disk I/O is slow.

For details, see the following topics:

• Using Catalog Functions

• Retrieving Data

• Selecting ODBC Functions

• Managing Connections and Updates

Using Catalog Functions

Because catalog functions, such as those listed here, are slow compared to other ODBC functions, their frequent
use can impair system performance:

• SQLColumns

• SQLForeignKeys

• SQLGetTypeInfo

• SQLSpecialColumns

• SQLStatistics

• SQLTables

SQLGetTypeInfo is included in this list of expensive ODBC functions because many drivers must query the
server to obtain accurate information about which types are supported (for example, to find dynamic types
such as user defined types).

Caching Information to Minimize the Use of Catalog Functions
To return all result column information mandated by the ODBC specification, a driver may have to perform
multiple queries, joins, subqueries, or unions to return the required result set for a single call to a catalog
function. These particular elements of the SQL language are performance expensive.

Although it is almost impossible to write an ODBC application without catalog functions, their use should be
minimized. By caching information, applications can avoid multiple executions.

For example, call SQLGetTypeInfo once in the application and cache the elements of the result set that your
application depends on. It is unlikely that any application uses all elements of the result set generated by a
catalog function, so the cached information should not be difficult to maintain.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2296

Chapter 11: Designing ODBC Applications for Performance Optimization

Avoiding Search Patterns
Passing NULL arguments or search patterns to catalog functions generates time-consuming queries. In addition,
network traffic potentially increases because of unwanted results. Always supply as many non-NULL arguments
to catalog functions as possible. Because catalog functions are slow, applications should invoke them efficiently.
Any information that the application can send the driver when calling catalog functions can result in improved
performance and reliability.

For example, consider a call to SQLTables where the application requests information about the table
"Customers." Often, this call is coded as shown, using as many NULL arguments as possible:

rc = SQLTables (hstmt, NULL, 0, NULL, 0, "Customers", SQL_NTS, NULL, 0);

A driver processes this SQLTables call into SQL that looks like this:

SELECT ... FROM SysTables WHERE TableName = ’Customers’
UNION ALL
SELECT ... FROM SysViews WHERE ViewName = ’Customers’
UNION ALL
SELECT ... FROM SysSynonyms WHERE SynName = ’Customers’ ORDER BY ...

In our example, the application provides scant information about the object for which information was requested.
Suppose three "Customers" tables were returned in the result set: the first table owned by the user named
Beth, the second owned by the sales department, and the third a view created by management.

It may not be obvious to the end user which table to choose. If the application had specified the OwnerName
argument in the SQLTables call, only one table would be returned and performance would improve. Less
network traffic would be required to return only one result row and unwanted rows would be filtered by the
database. In addition, if the TableType argument was supplied, the SQL sent to the server can be optimized
from a three-query union into a single Select statement as shown:

SELECT ... FROM SysTables WHERE TableName = 'Customers' AND Owner = 'Beth'

Using a Dummy Query to Determine Table Characteristics
Avoid using SQLColumns to determine characteristics about a table. Instead, use a dummy query with
SQLDescribeCol.

Consider an application that allows the user to choose the columns that will be selected. Should the application
use SQLColumns to return information about the columns to the user or prepare a dummy query and call
SQLDescribeCol?

Case 1: SQLColumns Method

rc = SQLColumns (... "UnknownTable" ...);
// This call to SQLColumns will generate a query to the system catalogs...
// possibly a join which must be prepared, executed, and produce a result set
rc = SQLBindCol (...);
rc = SQLExtendedFetch (...);
// user must retrieve N rows from the server
// N = # result columns of UnknownTable
// result column information has now been obtained

Case 2: SQLDescribeCol Method

// prepare dummy query
rc = SQLPrepare (... "SELECT * FROM UnknownTable WHERE 1 = 0" ...);
// query is never executed on the server - only prepared
rc = SQLNumResultCols (...);
for (irow = 1; irow <= NumColumns; irow++) {
 rc = SQLDescribeCol (...)
 // + optional calls to SQLColAttributes

297Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

 }
// result column information has now been obtained
// Note we also know the column ordering within the table!
// This information cannot be assumed from the SQLColumns example.

In both cases, a query is sent to the server, but in Case 1, the query must be evaluated and form a result set
that must be sent to the client. Clearly, Case 2 is the better performing model.

To complicate this discussion, let us consider a database server that does not natively support preparing a
SQL statement.The performance of Case 1 does not change, but the performance of Case 2 improves slightly
because the dummy query is evaluated before being prepared. Because the Where clause of the query always
evaluates to FALSE, the query generates no result rows and should execute without accessing table data.
Again, for this situation, Case 2 outperforms Case 1.

Retrieving Data

To retrieve data efficiently, return only the data that you need, and choose the most efficient method of doing
so. The guidelines in this section will help you optimize system performance when retrieving data with ODBC
applications.

Retrieving Long Data
Because retrieving long data across the network is slow and resource-intensive, applications should not request
long data (SQL_LONGVARCHAR, SQL_WLONGVARCHAR, and SQL_LONGVARBINARY data) unless it is
necessary.

Most users do not want to see long data. If the user does need to see these result items, the application can
query the database again, specifying only long columns in the select list. This technique allows the average
user to retrieve the result set without having to pay a high performance penalty for network traffic.

Although the best approach is to exclude long data from the select list, some applications do not formulate the
select list before sending the query to the ODBC driver (that is, some applications simply SELECT * FROM
table_name ...). If the select list contains long data, the driver must retrieve that data at fetch time even if
the application does not bind the long data in the result set. When possible, use a technique that does not
retrieve all columns of the table.

Reducing the Size of Data Retrieved
Sometimes, long data must be retrieved. When this is the case, remember that most users do not want to see
100 KB, or more, of text on the screen.

To reduce network traffic and improve performance, you can reduce the size of data being retrieved to some
manageable limit by calling SQLSetStmtAttr with the SQL_ATTR_MAX_LENGTH option.

Eliminating SQL_LONGVARCHAR, SQL_WLONGVARCHAR, and SQL_LONGVARBINARY data from the
result set is ideal for optimizing performance.

Many application developers mistakenly assume that if they call SQLGetData with a container of size x that
the ODBC driver only retrieves x bytes of information from the server. Because SQLGetData can be called
multiple times for any one column, most drivers optimize their network use by retrieving long data in large
chunks and then returning it to the user when requested. For example:

char CaseContainer[1000];
...
rc = SQLExecDirect (hstmt, "SELECT CaseHistory FROM Cases WHERE CaseNo = 71164", SQL_NTS);
...
rc = SQLFetch (hstmt);
rc = SQLGetData (hstmt, 1, CaseContainer,(SWORD) sizeof(CaseContainer), ...);

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2298

Chapter 11: Designing ODBC Applications for Performance Optimization

At this point, it is more likely that an ODBC driver will retrieve 64 KB of information from the server instead of
1 KB. In terms of network access, one 64-KB retrieval is less expensive than 64 retrievals of 1 KB. Unfortunately,
the application may not call SQLGetData again; therefore, the first and only retrieval of CaseHistory would be
slowed by the fact that 64 KB of data must be sent across the network.

Many ODBC drivers allow you to limit the amount of data retrieved across the network by supporting the
SQL_MAX_LENGTH attribute.This attribute allows the driver to communicate to the database server that only
x bytes of data are relevant to the client. The server responds by sending only the first x bytes of data for all
result columns. This optimization substantially reduces network traffic and improves client performance. The
previous example returned only one row, but consider the case where 100 rows are returned in the result
set—the performance improvement would be substantial.

Using Bound Columns
Retrieving data through bound columns (SQLBindCol) instead of using SQLGetData reduces the ODBC call
load and improves performance.

Consider the following code fragment:
rc = SQLExecDirect (hstmt, "SELECT <20 columns> FROM Employees WHERE HireDate >= ?", SQL_NTS);
do {
 rc = SQLFetch (hstmt);
 // call SQLGetData 20 times
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

Suppose the query returns 90 result rows. In this case, 1891 ODBC calls are made (20 calls to SQLGetData
x 90 result rows + 91 calls to SQLFetch).

Consider the same scenario that uses SQLBindCol instead of SQLGetData:
rc = SQLExecDirect (hstmt, "SELECT <20 columns> FROM Employees WHERE HireDate >= ?", SQL_NTS);
// call SQLBindCol 20 times
do {
rc = SQLFetch (hstmt);
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

The number of ODBC calls made is reduced from 1891 to 111 (20 calls to SQLBindCol + 91 calls to SQLFetch).
In addition to reducing the call load, many drivers optimize how SQLBindCol is used by binding result information
directly from the database server into the user’s buffer. That is, instead of the driver retrieving information into
a container and then copying that information to the user’s buffer, the driver simply requests the information
from the server be placed directly into the user’s buffer.

Using SQLExtendedFetch Instead of SQLFetch
Use SQLExtendedFetch to retrieve data instead of SQLFetch. The ODBC call load decreases (resulting in
better performance) and the code is less complex (resulting in more maintainable code).

Most ODBC drivers now support SQLExtendedFetch for forward only cursors; yet, most ODBC applications
use SQLFetch to retrieve data. Consider the examples in "Using Bound Columns", this time using
SQLExtendedFetch instead of SQLFetch:

rc = SQLSetStmtOption (hstmt, SQL_ROWSET_SIZE, 100);
// use arrays of 100 elements
rc = SQLExecDirect (hstmt, "SELECT <20 columns> FROM Employees WHERE HireDate >= ?", SQL_NTS);
// call SQLBindCol 1 time specifying row-wise binding
do {
 rc = SQLExtendedFetch (hstmt, SQL_FETCH_NEXT, 0, &RowsFetched,RowStatus);
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

Notice the improvement from the previous examples. The initial call load was 1891 ODBC calls. By choosing
ODBC calls carefully, the number of ODBC calls made by the application has now been reduced to 4 (1
SQLSetStmtOption + 1 SQLExecDirect + 1 SQLBindCol + 1 SQLExtendedFetch). In addition to reducing the
call load, many ODBC drivers retrieve data from the server in arrays, further improving the performance by
reducing network traffic.

299Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

For ODBC drivers that do not support SQLExtendedFetch, the application can enable forward-only cursors
using the ODBC cursor library:

(rc=SQLSetConnectOption (hdbc, SQL_ODBC_CURSORS, SQL_CUR_USE_IF_NEEDED);

Although using the cursor library does not improve performance, it should not be detrimental to application
response time when using forward-only cursors (no logging is required). Furthermore, using the cursor library
means that the application can always depend on SQLExtendedFetch being available.This simplifies the code
because the application does not require two algorithms (one using SQLExtendedFetch and one using
SQLFetch).

See also
Using Bound Columns on page 299

Choosing the Right Data Type
Retrieving and sending certain data types can be expensive. When you are working with data on a large scale,
select the data type that can be processed most efficiently. For example, integer data is processed faster than
floating-point data. Floating-point data is defined according to internal database-specific formats, usually in a
compressed format. The data must be decompressed and converted into a different format so that it can be
processed by the wire protocol.

Selecting ODBC Functions

The guidelines in this section will help you select which ODBC functions will give you the best performance.

Using SQLPrepare/SQLExecute and SQLExecDirect
Using SQLPrepare/SQLExecute is not always as efficient as SQLExecDirect. Use SQLExecDirect for queries
that will be executed once and SQLPrepare/SQLExecute for queries that will be executed multiple times.

ODBC drivers are optimized based on the perceived use of the functions that are being executed.
SQLPrepare/SQLExecute is optimized for multiple executions of statements that use parameter markers.
SQLExecDirect is optimized for a single execution of a SQL statement. Unfortunately, more than 75% of all
ODBC applications use SQLPrepare/SQLExecute exclusively.

Consider the case where an ODBC driver implements SQLPrepare by creating a stored procedure on the
server that contains the prepared statement. Creating stored procedures involve substantial overhead, but the
statement can be executed multiple times. Although creating stored procedures is performance-expensive,
execution is minimal because the query is parsed and optimization paths are stored at create procedure time.

Using SQLPrepare/SQLExecute for a statement that is executed only once results in unnecessary overhead.
Furthermore, applications that use SQLPrepare/SQLExecute for large single execution query batches exhibit
poor performance. Similarly, applications that always use SQLExecDirect do not perform as well as those that
use a logical combination of SQLPrepare/SQLExecute and SQLExecDirect sequences.

Using Arrays of Parameters
Passing arrays of parameter values for bulk insert operations, for example, with SQLPrepare/SQLExecute and
SQLExecDirect can reduce the ODBC call load and network traffic.To use arrays of parameters, the application
calls SQLSetStmtAttr with the following attribute arguments:

• SQL_ATTR_PARAMSET_SIZE sets the array size of the parameter.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2300

Chapter 11: Designing ODBC Applications for Performance Optimization

• SQL_ATTR_PARAMS_PROCESSED_PTR assigns a variable filled by SQLExecute, which contains the
number of rows that are actually inserted.

• SQL_ATTR_PARAM_STATUS_PTR points to an array in which status information for each row of parameter
values is returned.

Note: ODBC 3.x replaced the ODBC 2.x call to SQLParamOptions with calls to SQLSetStmtAttr using the
SQL_ATTR_PARAMSET_SIZE, SQL_ATTR_PARAMS_PROCESSED_ARRAY, and
SQL_ATTR_PARAM_STATUS_PTR arguments.

Before executing the statement, the application sets the value of each data element in the bound array. When
the statement is executed, the driver tries to process the entire array contents using one network roundtrip.
For example, let us compare the following examples, Case 1 and Case 2.

Case 1: Executing Prepared Statement Multiple Times
rc = SQLPrepare (hstmt, "INSERT INTO DailyLedger (...) VALUES (?,?,...)", SQL_NTS);
// bind parameters
...
do {
 // read ledger values into bound parameter buffers
 ...
 rc = SQLExecute (hstmt);
 // insert row
} while ! (eof);

Case 2: Using Arrays of Parameters
SQLPrepare (hstmt, " INSERT INTO DailyLedger (...) VALUES (?,?,...)", SQL_NTS);
SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMSET_SIZE, (UDWORD)100, SQL_IS_UINTEGER);
SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMS_PROCESSED_PTR, &rows_processed, SQL_IS_POINTER);
// Specify an array in which to return the status of
// each set of parameters.
SQLSetStmtAttr(hstmt, SQL_ATTR_PARAM_STATUS_PTR, ParamStatusArray, SQL_IS_POINTER);
// pass 100 parameters per execute
// bind parameters
...
do {
 // read up to 100 ledger values into
 // bound parameter buffers
 ...
 rc = SQLExecute (hstmt);
 // insert a group of 100 rows
} while ! (eof);

In Case 1, if there are 100 rows to insert, 101 network roundtrips are required to the server, one to prepare the
statement with SQLPrepare and 100 additional roundtrips for each time SQLExecute is called.

In Case 2, the call load has been reduced from 100 SQLExecute calls to only 1 SQLExecute call. Furthermore,
network traffic is reduced considerably.

Using the Cursor Library
If the driver provides scrollable cursors, do not use the cursor library.The cursor library creates local temporary
log files, which are performance-expensive to generate and provide worse performance than native scrollable
cursors.

The cursor library adds support for static cursors, which simplifies the coding of applications that use scrollable
cursors. However, the cursor library creates temporary log files on the user’s local disk drive to accomplish the
task. Typically, disk I/O is a slow operation. Although the cursor library is beneficial, applications should not
automatically choose to use the cursor library when an ODBC driver supports scrollable cursors natively.

301Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Typically, ODBC drivers that support scrollable cursors achieve high performance by requesting that the
database server produce a scrollable result set instead of emulating the capability by creating log files. Many
applications use:

rc = SQLSetConnectOption (hdbc, SQL_ODBC_CURSORS, SQL_CUR_USE_ODBC);

but should use:

rc = SQLSetConnectOption (hdbc, SQL_ODBC_CURSORS, SQL_CUR_USE_IF_NEEDED);

Managing Connections and Updates

The guidelines in this section will help you to manage connections and updates to improve system performance
for your ODBC applications.

Managing Connections
Connection management is important to application performance. Optimize your application by connecting
once and using multiple statement handles, instead of performing multiple connections. Avoid connecting to
a data source after establishing an initial connection.

Although gathering driver information at connect time is a good practice, it is often more efficient to gather it
in one step rather than two steps. Some ODBC applications are designed to call informational gathering routines
that have no record of already attached connection handles. For example, some applications establish a
connection and then call a routine in a separate DLL or shared library that reattaches and gathers information
about the driver. Applications that are designed as separate entities should pass the already connected HDBC
pointer to the data collection routine instead of establishing a second connection.

Another bad practice is to connect and disconnect several times throughout your application to process SQL
statements. Connection handles can have multiple statement handles associated with them. Statement handles
can provide memory storage for information about SQL statements. Therefore, applications do not need to
allocate new connection handles to process SQL statements. Instead, applications should use statement
handles to manage multiple SQL statements.

You can significantly improve performance with connection pooling, especially for applications that connect
over a network or through the World Wide Web. With connection pooling, closing connections does not close
the physical connection to the database. When an application requests a connection, an active connection
from the connection pool is reused, avoiding the network round trips needed to create a new connection.

Connection and statement handling should be addressed before implementation. Spending time and thoughtfully
handling connection management improves application performance and maintainability.

Managing Commits in Transactions
Committing data is extremely disk I/O intensive and slow. If the driver can support transactions, always turn
autocommit off.

What does a commit actually involve? The database server must flush back to disk every data page that
contains updated or new data. This is not a sequential write but a searched write to replace existing data in
the table. By default, autocommit is on when connecting to a data source. Autocommit mode usually impairs
system performance because of the significant amount of disk I/O needed to commit every operation.

Some database servers do not provide an Autocommit mode. For this type of server, the ODBC driver must
explicitly issue a COMMIT statement and a BEGIN TRANSACTION for every operation sent to the server. In
addition to the large amount of disk I/O required to support Autocommit mode, a performance penalty is paid
for up to three network requests for every statement issued by an application.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2302

Chapter 11: Designing ODBC Applications for Performance Optimization

Although using transactions can help application performance, do not take this tip too far. Leaving transactions
active can reduce throughput by holding locks on rows for long times, preventing other users from accessing
the rows. Commit transactions in intervals that allow maximum concurrency.

Choosing the Right Transaction Model
Many systems support distributed transactions; that is, transactions that span multiple connections. Distributed
transactions are at least four times slower than normal transactions due to the logging and network round trips
necessary to communicate between all the components involved in the distributed transaction. Unless distributed
transactions are required, avoid using them. Instead, use local transactions when possible.

Using Positioned Updates and Deletes
Use positioned updates and deletes or SQLSetPos to update data. Although positioned updates do not apply
to all types of applications, developers should use positioned updates and deletes when it makes sense.
Positioned updates (either through UPDATE WHERE CURRENT OF CURSOR or through SQLSetPos) allow the
developer to signal the driver to "change the data here" by positioning the database cursor at the appropriate
row to be changed. The designer is not forced to build a complex SQL statement, but simply supplies the data
to be changed.

In addition to making the application more maintainable, positioned updates usually result in improved
performance. Because the database server is already positioned on the row for the Select statement in process,
performance-expensive operations to locate the row to be changed are not needed. If the row must be located,
the server typically has an internal pointer to the row available (for example, ROWID).

Using SQLSpecialColumns
Use SQLSpecialColumns to determine the optimal set of columns to use in the Where clause for updating
data. Often, pseudo-columns provide the fastest access to the data, and these columns can only be determined
by using SQLSpecialColumns.

Some applications cannot be designed to take advantage of positioned updates and deletes.These applications
typically update data by forming a Where clause consisting of some subset of the column values returned in
the result set. Some applications may formulate the Where clause by using all searchable result columns or
by calling SQLStatistics to find columns that are part of a unique index. These methods typically work, but can
result in fairly complex queries.

Consider the following example:

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name, ssn, address, city, state, zip
 FROM emp", SQL_NTS);
// fetchdata
...
rc = SQLExecDirect (hstmt, "UPDATE EMP SET ADDRESS = ? WHERE first_name = ? AND last_name
 = ? AND
 ssn = ? AND address = ? AND city = ? AND state = ? AND zip = ?", SQL_NTS);
// fairly complex query

Applications should call SQLSpecialColumns/SQL_BEST_ROWID to retrieve the optimal set of columns
(possibly a pseudo-column) that identifies a given record. Many databases support special columns that are
not explicitly defined by the user in the table definition but are "hidden" columns of every table (for example,
ROWID and TID). These pseudo-columns provide the fastest access to data because they typically point to
the exact location of the record. Because pseudo-columns are not part of the explicit table definition, they are
not returned from SQLColumns. To determine if pseudo-columns exist, call SQLSpecialColumns.

303Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Consider the previous example again:

...
rc = SQLSpecialColumns (hstmt, ’emp’, ...);
...
rc = SQLExecDirect (hstmt, "SELECT first_name, last_name, ssn, address, city, state,
zip, ROWID
 FROM emp", SQL_NTS);
// fetch data and probably "hide" ROWID from the user
...
rc = SQLExecDirect (hstmt, "UPDATE emp SET address = ? WHERE ROWID = ?",SQL_NTS);
// fastest access to the data!

If your data source does not contain special pseudo-columns, the result set of SQLSpecialColumns consists
of columns of the optimal unique index on the specified table (if a unique index exists).Therefore, your application
does not need to call SQLStatistics to find the smallest unique index.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2304

Chapter 11: Designing ODBC Applications for Performance Optimization

12
Locking and Isolation Levels

This chapter discusses locking and isolation levels and how their settings can affect the data you retrieve.
Oracle supports isolation level 1 (read committed) and isolation level 3 (serializable). Oracle supports record-level
locking.

For details, see the following topics:

• Locking

• Isolation Levels

• Locking Modes and Levels

Locking

Locking is a database operation that restricts a user from accessing a table or record. Locking is used in
situations where more than one user might try to use the same table or record at the same time. By locking
the table or record, the system ensures that only one user at a time can affect the data.

Locking is critical in multiuser databases, where different users can try to access or modify the same records
concurrently. Although such concurrent database activity is desirable, it can create problems. Without locking,
for example, if two users try to modify the same record at the same time, they might encounter problems ranging
from retrieving bad data to deleting data that the other user needs. If, however, the first user to access a record
can lock that record to temporarily prevent other users from modifying it, such problems can be avoided. Locking
provides a way to manage concurrent database access while minimizing the various problems it can cause.

305Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Isolation Levels

An isolation level represents a particular locking strategy employed in the database system to improve data
consistency. The higher the isolation level, the more complex the locking strategy behind it. The isolation level
provided by the database determines whether a transaction will encounter the following behaviors in data
consistency:

User 1 modifies a row. User 2 reads the same row before User 1 commits.
User 1 performs a rollback. User 2 has read a row that has never really existed
in the database. User 2 may base decisions on false data.

Dirty reads

User 1 reads a row, but does not commit. User 2 modifies or deletes the same
row and then commits. User 1 rereads the row and finds it has changed (or
has been deleted).

Non-repeatable reads

User 1 uses a search condition to read a set of rows, but does not commit.
User 2 inserts one or more rows that satisfy this search condition, then commits.

Phantom reads

User 1 rereads the rows using the search condition and discovers rows that
were not present before.

Isolation levels represent the database system’s ability to prevent these behaviors. The American National
Standards Institute (ANSI) defines four isolation levels:

• Read uncommitted (0)

• Read committed (1)

• Repeatable read (2)

• Serializable (3)

In ascending order (0–3), these isolation levels provide an increasing amount of data consistency to the
transaction. At the lowest level, all three behaviors can occur. At the highest level, none can occur.The success
of each level in preventing these behaviors is due to the locking strategies they use, which are as follows:

Locks are obtained on modifications to the database and held until end of
transaction (EOT). Reading from the database does not involve any locking.

Read uncommitted (0)

Locks are acquired for reading and modifying the database. Locks are released
after reading but locks on modified objects are held until EOT.

Read committed (1)

Locks are obtained for reading and modifying the database. Locks on all
modified objects are held until EOT. Locks obtained for reading data are held

Repeatable read (2)

until EOT. Locks on non-modified access structures (such as indexes and
hashing structures) are released after reading.

All data read or modified is locked until EOT. All access structures that are
modified are locked until EOT. Access structures used by the query are locked
until EOT.

Serializable (3)

The following table shows what data consistency behaviors can occur at each isolation level.

Table 21: Isolation Levels and Data Consistency

Phantom ReadNonrepeatable ReadDirty ReadLevel

YesYesYes0, Read uncommitted

YesYesNo1, Read committed

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2306

Chapter 12: Locking and Isolation Levels

Phantom ReadNonrepeatable ReadDirty ReadLevel

YesNoNo2, Repeatable read

NoNoNo3, Serializable

Although higher isolation levels provide better data consistency, this consistency can be costly in terms of the
concurrency provided to individual users. Concurrency is the ability of multiple users to access and modify data
simultaneously. As isolation levels increase, so does the chance that the locking strategy used will create
problems in concurrency.

The higher the isolation level, the more locking involved, and the more time users may spend waiting for data
to be freed by another user. Because of this inverse relationship between isolation levels and concurrency,
you must consider how people use the database before choosing an isolation level.You must weigh the
trade-offs between data consistency and concurrency, and decide which is more important.

Locking Modes and Levels

Different database systems use various locking modes, but they have two basic modes in common: shared
and exclusive. Shared locks can be held on a single object by multiple users. If one user has a shared lock on
a record, then a second user can also get a shared lock on that same record; however, the second user cannot
get an exclusive lock on that record. Exclusive locks are exclusive to the user that obtains them. If one user
has an exclusive lock on a record, then a second user cannot get either type of lock on the same record.

Performance and concurrency can also be affected by the locking level used in the database system. The
locking level determines the size of an object that is locked in a database. For example, many database systems
let you lock an entire table, as well as individual records. An intermediate level of locking, page-level locking,
is also common. A page contains one or more records and is typically the amount of data read from the disk
in a single disk access.The major disadvantage of page-level locking is that if one user locks a record, a second
user may not be able to lock other records because they are stored on the same page as the locked record.

307Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2308

Chapter 12: Locking and Isolation Levels

13
SSL Encryption Cipher Suites

See "Using Security" for information about using Secure Sockets Layer (SSL) data encryption with the drivers.
Transport Layer Security (TLS) protocols are supported as listed in this chapter.

The following tables list the SSL and encryption cipher suites supported by your Progress DataDirect for ODBC

driver. The driver attempts to negotiate either SSL v3 or TLS v1 with the server using OpenSSL cipher suites.

The following table shows the OpenSSL encryption cipher suites that the driver can use if it can negotiate
SSL v2 with the server, with the name of the corresponding SSL v2 encryption cipher suites.

Note: OpenSSL libraries that are 1.1.1 and higher do not support SSL v2 cipher suites. For more information
on specifying the OpenSSL library versions used by the driver, see "Designating an OpenSSL Library."

Table 22: OpenSSL Cipher Suites to SSL v2 Cipher Suites

SSL Encryption Cipher SuiteOpenSSL Cipher Suite

SSL_CK_DES_64_CBC_WITH_MD5DES-CBC-MD5

SSL_CK_DES_192_EDE3_CBC_WITH_MD5DES-CBC3-MD5

SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5EXP-RC2-CBC-MD5

SSL_CK_RC4_128_EXPORT40_WITH_MD5EXP-RC4-MD5

SSL_CK_RC2_128_CBC_WITH_MD5RC2-CBC-MD5

SSL_CK_RC4_128_WITH_MD5
RC4-MD5

309Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

The following table shows the OpenSSL encryption cipher suites that the driver can use if it can negotiate
SSL v3 with the server, with the name of the corresponding SSL v3 encryption cipher suites.

Table 23: Mapping OpenSSL Cipher Suites to SSL v3 Cipher Suites

SSL v3 Cipher SuiteOpenSSL Cipher Suite

TLS_RSA_WITH_AES_128_GCM_SHA256AES128-GCM-SHA256

TLS_RSA_WITH_AES_128_CBC_SHA10AES128-SHA

TLS_RSA_WITH_AES_128_CBC_SHA256AES128-SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384AES256-GCM-SHA384

TLS_RSA_WITH_AES_256_CBC_SHA 10AES256-SHA

TLS_RSA_WITH_AES_256_CBC_SHA256AES256-SHA256

SSL_RSA_WITH_3DES_EDE_CBC_SHADES-CBC3-SHA

SSL_RSA_WITH_DES_CBC_SHADES-CBC-SHA

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256DHE-DSS-AES128-GCM-SHA256

TLS_DHE_DSS_WITH_AES_128_CBC_SHA10DHE-DSS-AES128-SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256DHE-DSS-AES128-SHA256

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384DHE-DSS-AES256-GCM-SHA384

TLS_DHE_DSS_WITH_AES_256_CBC_SHA10DHE-DSS-AES256-SHA

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256DHE-DSS-AES256-SHA256

TLS_DHE_DSS_WITH_SEED_CBC_SHA11DHE-DSS-SEED-SHA

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256DHE-RSA-AES128-GCM-SHA256

TLS_DHE_RSA_WITH_AES_128_CBC_SHA10DHE-RSA-AES128-SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256DHE-RSA-AES128-SHA256

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384DHE-RSA-AES256-GCM-SHA384

TLS_DHE_RSA_WITH_AES_256_CBC_SHA10DHE-RSA-AES256-SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256DHE-RSA-AES256-SHA256

TLS_DHE_RSA_WITH_SEED_CBC_SHA11DHE-RSA-SEED-SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHAEDH-DSS-DES-CBC3-SHA

10 AES cipher suites from RFC3268 are used to extend TLS v1.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2310

Chapter 13: SSL Encryption Cipher Suites

SSL v3 Cipher SuiteOpenSSL Cipher Suite

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHAEDH-DSS-DES-CBC-SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHAEDH-RSA-DES-CBC3-SHA

SSL_DHE_RSA_WITH_DES_CBC_SHAEDH-RSA-DES-CBC-SHA

SSL_RSA_EXPORT_WITH_DES40_CBC_SHAEXP-DES-CBC-SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHAEXP-EDH-DSS-DES-CBC-SHA

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHAEXP-EDH-RSA-DES-CBC-SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5EXP-RC2-CBC-MD5

SSL_RSA_EXPORT_WITH_RC4_40_MD5EXP-RC4-MD5

TLS_PSK_WITH_3DES_EDE_CBC_SHAPSK-3DES-EDE-CBC-SHA

TLS_PSK_WITH_AES_128_CBC_SHAPSK-AES128-CBC-SHA

TLS_PSK_WITH_AES_256_CBC_SHAPSK-AES256-CBC-SHA

TLS_PSK_WITH_RC4_128_SHAPSK-RC4-SHA

SSL_RSA_WITH_RC4_128_MD5RC4-MD5

SSL_RSA_WITH_RC4_128_SHARC4-SHA

TLS_RSA_WITH_SEED_CBC_SHA11SEED-SHA

TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHASRP-3DES-EDE-CBC-SHA

TLS_SRP_SHA_WITH_AES_128_CBC_SHASRP-AES-128-CBC-SHA

TLS_SRP_SHA_WITH_AES_256_CBC_SHASRP-AES-256-CBC-SHA

TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHASRP-DSS-3DES-EDE-CBC-SHA

TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHASRP-DSS-AES-128-CBC-SHA

TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHASRP-DSS-AES-256-CBC-SHA

TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHASRP-RSA-3DES-EDE-CBC-SHA

TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHASRP-RSA-AES-128-CBC-SHA

TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHASRP-RSA-AES-256-CBC-SHA

11 Seed cipher suites from RFC4162 are used to extend TLS v1.

311Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

The following table shows the OpenSSL Encryption Cipher suites that the driver can use if it can negotiate
TLS v1.0, TLS v1.1, and TLS v1.2 with the server, with the name of the corresponding cipher suites.

Table 24: Mapping OpenSSL Encryption Cipher Suites to TLS v1.0,TLS v1.1, and TLS v1.2 Cipher Suites

Maps to TLS v1 Cipher SuiteOpenSSL Cipher Suite

TLS_RSA_WITH_AES_128_GCM_SHA256AES128-GCM-SHA256

TLS_RSA_WITH_AES_128_CBC_SHA10AES128-SHA

TLS_RSA_WITH_AES_128_CBC_SHA256AES128-SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384AES256-GCM-SHA384

TLS_RSA_WITH_AES_256_CBC_SHA10AES256-SHA

TLS_RSA_WITH_AES_256_CBC_SHA256AES256-SHA256

TLS_RSA_WITH_ARIA_128_GCM_SHA25612ARIA128-GCM-SHA256

TLS_RSA_WITH_ARIA_256_GCM_SHA38412ARIA256-GCM-SHA384

TLS_RSA_WITH_3DES_EDE_CBC_SHADES-CBC3-SHA

TLS_RSA_WITH_DES_CBC_SHADES-CBC-SHA

DHE-DSS-AES128-GCM-SHA256DHE-DSS-AES128-GCM-SHA256

TLS_DHE_DSS_WITH_AES_128_CBC_SHA10DHE-DSS-AES128-SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256DHE-DSS-AES128-SHA256

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384DHE-DSS-AES256-GCM-SHA384

TLS_DHE_DSS_WITH_AES_256_CBC_SHA10DHE-DSS-AES256-SHA

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256DHE-DSS-AES256-SHA256

TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA25612DHE-DSS-ARIA128-GCM-SHA256

TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA38412DHE-DSS-ARIA256-GCM-SHA384

TLS_DHE_DSS_WITH_SEED_CBC_SHA11DHE-DSS-SEED-SHA

TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256 12DHE-PSK-ARIA128-GCM-SHA256

TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384 12DHE-PSK-ARIA256-GCM-SHA384

TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA25612DHE-PSK-CHACHA20-POLY1305

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256DHE-RSA-AES128-GCM-SHA256

TLS_DHE_RSA_WITH_AES_128_CBC_SHA10DHE-RSA-AES128-SHA

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2312

Chapter 13: SSL Encryption Cipher Suites

Maps to TLS v1 Cipher SuiteOpenSSL Cipher Suite

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256DHE-RSA-AES128-SHA

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384DHE-RSA-AES256-GCM-SHA384

TLS_DHE_RSA_WITH_AES_256_CBC_SHA10DHE-RSA-AES256-SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256DHE-RSA-AES256-SHA256

TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA25612DHE-RSA-ARIA128-GCM-SHA256

TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA38412DHE-RSA-ARIA256-GCM-SHA384

TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA25612DHE-RSA-CHACHA20-POLY1305

TLS_DHE_RSA_WITH_SEED_CBC_SHA11DHE-RSA-SEED-SHA

TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 12ECDHE-ARIA128-GCM-SHA256

TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 12ECDHE-ARIA256-GCM-SHA384

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA25612ECDHE-RSA-CHACHA20-POLY1305

TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA25612ECDHE-ECDSA-ARIA128-GCM-SHA256

TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA38412ECDHE-ECDSA-ARIA256-GCM-SHA384

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA25612ECDHE-ECDSA-CHACHA20-POLY1305

TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA25612ECDHE-PSK-CHACHA20-POLY1305

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384ECDHE-RSA-AES256-SHA384

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHAECDHE-RSA-AES256-SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256ECDHE-RSA-AES128-SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHAECDHE-RSA-AES128-SHA

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHAEDH-DSS-DES-CBC3-SHA

TLS_DHE_DSS_WITH_DES_CBC_SHAEDH-DSS-DES-CBC-SHA

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHAEDH-RSA-DES-CBC3-SHA

TLS_DHE_RSA_WITH_DES_CBC_SHAEDH-RSA-DES-CBC-SHA

TLS_RSA_EXPORT_WITH_DES40_CBC_SHAEXP-DES-CBC-SHA

TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHAEXP-EDH-DSS-DES-CBC-SHA

12 Supported by OpenSSL libraries that are version 1.1.1 and higher.

313Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Maps to TLS v1 Cipher SuiteOpenSSL Cipher Suite

TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHAEXP-EDH-RSA-DES-CBC-SHA

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5EXP-RC2-CBC-MD5

TLS_RSA_EXPORT_WITH_RC4_40_MD5EXP-RC4-MD5

TLS_PSK_WITH_3DES_EDE_CBC_SHAPSK-3DES-EDE-CBC-SHA

TLS_PSK_WITH_AES_128_CBC_SHAPSK-AES128-CBC-SHA

TLS_PSK_WITH_AES_256_CBC_SHAPSK-AES256-CBC-SHA

TLS_PSK_WITH_ARIA_128_GCM_SHA256 12PSK-ARIA128-GCM-SHA256

TLS_PSK_WITH_ARIA_256_GCM_SHA384 12PSK-ARIA256-GCM-SHA384

TLS_PSK_WITH_CHACHA20_POLY1305_SHA25612PSK-CHACHA20-POLY1305

TLS_PSK_WITH_RC4_128_SHAPSK-RC4-SHA

TLS_RSA_WITH_RC4_128_MD5RC4-MD5

TLS_RSA_WITH_RC4_128_SHARC4-SHA

TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256 12RSA-PSK-ARIA128-GCM-SHA256

TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384 12RSA-PSK-ARIA256-GCM-SHA384

TLS_RSA_PSK_WITH_CHACHA20_POLY1305_SHA25612RSA-PSK-CHACHA20-POLY1305

TLS_RSA_WITH_SEED_CBC_SHA11SEED-SHA

TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHASRP-3DES-EDE-CBC-SHA

TLS_SRP_SHA_WITH_AES_128_CBC_SHASRP-AES-128-CBC-SHA

TLS_SRP_SHA_WITH_AES_128_CBC_SHASRP-AES-128-CBC-SHA

TLS_SRP_SHA_WITH_AES_256_CBC_SHASRP-AES-256-CBC-SHA

TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHASRP-DSS-3DES-EDE-CBC-SHA

TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHASRP-DSS-AES-128-CBC-SHA

TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHASRP-DSS-AES-256-CBC-SHA

TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHASRP-RSA-3DES-EDE-CBC-SHA

TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHASRP-RSA-AES-128-CBC-SHA

TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHASRP-RSA-AES-256-CBC-SHA

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2314

Chapter 13: SSL Encryption Cipher Suites

Reference:

OpenSSL Cryptography and SSL/TLS Toolkit

315Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

http://www.openssl.org/docs/apps/ciphers.html

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2316

Chapter 13: SSL Encryption Cipher Suites

14
DataDirect Bulk Load

This section contains detailed information about the functions and statement attributes associated with DataDirect
Bulk Load. The driver currently supports DataDirect Bulk Load on Windows, UNIX, and Linux platforms.

For a full discussion of the features and operation of DataDirect Bulk Load, see "Using DataDirect Bulk Load."

For details, see the following topics:

• DataDirect Bulk Load Functions

• Utility Functions

• Export, Validate, and Load Functions

• DataDirect Bulk Load Statement Attributes

DataDirect Bulk Load Functions

The following DataDirect functions and parameters are not part of the standard ODBC API. They include
functions for returning errors and warnings on bulk operations as well as functions for bulk export, loading, and
verification:

• GetBulkDiagRec and GetBulkDiagRecW

• ExportTableToFile and ExportTableToFileW

• ValidateTableFromFile and ValidateTableFromFileW

• LoadTableFromFile and LoadTableFromFileW

317Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Note: For your application to use DataDirect Bulk Load functionality, it must obtain driver connection handles
and function pointers, as follows:

1. Use SQLGetInfo with the parameter SQL_DRIVER_HDBC to obtain the driver’s connection handle from
the Driver Manager.

2. Use SQLGetInfo with the parameter SQL_DRIVER_HLIB to obtain the driver’s shared library or DLL handle
from the Driver Manager.

3. Obtain function pointers to the bulk load functions using the function name resolution method specific to
your operating system.The bulk.c source file shipped with the drivers contains the function resolveName
that illustrates how to obtain function pointers to the bulk load functions.

All of this is detailed in the code examples shown in the following sections. All of these functions can be found
in the commented bulk.c source file that ships with the drivers. This file is located in the \samples\bulk
subdirectory of the product installation directory along with a text file named bulk.txt. Please consult bulk.txt
for instructions about the bulk.c file.

See also
GetBulkDiagRec and GetBulkDiagRecW on page 318
ExportTableToFile and ExportTableToFileW on page 320
ValidateTableFromFile and ValidateTableFromFileW on page 323
LoadTableFromFile and LoadTableFromFileW on page 325

Utility Functions

The example code in this section shows utility functions to which the DataDirect functions for bulk exporting,
verification, and bulk loading refer, as well as the DataDirect functions GetBulkDiagRec and GetBulkDiagRecW.

GetBulkDiagRec and GetBulkDiagRecW

Syntax

SQLReturn
GetBulkDiagRec (SQLSMALLINT HandleType,
 SQLHANDLE Handle,
 SQLSMALLINT RecNumber,
 SQLCHAR* Sqlstate,
 SQLINTEGER* NativeError,
 SQLCHAR* MessageText,
 SQLSMALLINT BufferLength,
 SQLSMALLINT* TextLength);
GetBulkDiagRecW (SQLSMALLINT HandleType,
 SQLHANDLE Handle,
 SQLSMALLINT RecNumber,
 SQLWCHAR* Sqlstate,
 SQLINTEGER* NativeError,
 SQLWCHAR* MessageText,
 SQLSMALLINT BufferLength,
 SQLSMALLINT* TextLength);

The standard ODBC return codes are returned: SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_INVALID_HANDLE, SQL_NO_DATA, and SQL_ERROR.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2318

Chapter 14: DataDirect Bulk Load

Description
GetBulkDiagRec (ANSI application) and GetBulkDiagRecW (Unicode application) return errors and warnings
generated by bulk operations. The argument definition, return values, and function behavior is the same as for
the standard ODBC SQLGetDiagRec and SQLGetDiagRecW functions with the following exceptions:

• The GetBulkDiagRec and GetBulkDiagRecW functions can be called after a bulk load, export or validate
function is invoked to retrieve any error messages generated by the bulk operation. Calling these functions
after any function except a bulk function is not recommended.

• The values returned in the Sqlstate and MessageText buffers by the GetBulkDiagRecW function are encoded
as UTF-16 on Windows platforms. On UNIX and Linux platforms, the values returned for Sqlstate and
MessageText are UTF-16 if the value of the SQL_ATTR_APP_UNICODE_TYPE is SQL_DD_CP_UTF16
and UTF-8 if the value of SQL_ATTR_APP_UNICODE_TYPE is SQL_DD_CP_UTF8.

• The handle passed as the Handle argument must be a driver connection handle obtained by calling
SQLGetInfo (<ODBC Conn Handle>, SQL_DRIVER_HDBC).

• SQL_HANDLE_DBC is the only value accepted for HandleType. Any other value causes an error to be
returned.

Example

#include "qesqlext.h"

#ifndef NULL
#define NULL 0
#endif

#if (! defined (_WIN32)) && (! defined (_WIN64))
typedef void * HMODULE;
#endif

/* Get the address of a routine in a shared library or DLL. */
void * resolveName (
 HMODULE hmod,
 const char *name)
{
#if defined (_WIN32) || defined (_WIN64)

 return GetProcAddress (hmod, name);
#else
 return dlsym (hmod, name);
#endif
}
/* Get errors directly from the driver's connection handle. */
void driverError (void *driverHandle, HMODULE hmod)
{
 UCHAR sqlstate[16];
 UCHAR errmsg[SQL_MAX_MESSAGE_LENGTH * 2];
 SDWORD nativeerr;
 SWORD actualmsglen;
 RETCODE rc;
 SQLSMALLINT i;
 PGetBulkDiagRec getBulkDiagRec;

 getBulkDiagRec = (PGetBulkDiagRec)
 resolveName (hmod, "GetBulkDiagRec");

 if (! getBulkDiagRec) {
 printf ("Cannot find GetBulkDiagRec!\n");
 return;
 }

 i = 1;
loop: rc = (*getBulkDiagRec) (SQL_HANDLE_DBC,

319Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

 driverHandle, i++,
 sqlstate, &nativeerr, errmsg,
 SQL_MAX_MESSAGE_LENGTH - 1, &actualmsglen);

 if (rc == SQL_ERROR) {
 printf ("GetBulkDiagRec failed!\n");
 return;
 }

 if (rc == SQL_NO_DATA_FOUND) return;

 printf ("SQLSTATE = %s\n", sqlstate);
 printf ("NATIVE ERROR = %d\n", nativeerr);
 errmsg[actualmsglen] = '\0';
 printf ("MSG = %s\n\n", errmsg);
 goto loop;
}

Export, Validate, and Load Functions

The example code in this section shows the DataDirect functions for bulk exporting, verification, and bulk
loading.

ExportTableToFile and ExportTableToFileW

Syntax

SQLReturn
ExportTableToFile (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* FileName,
 SQLLEN IANAAppCodePage,
 SQLLEN ErrorTolerance,
 SQLLEN WarningTolerance,
 SQLCHAR* LogFile)
ExportTableToFileW (HDBC hdbc,
 SQLWCHAR* TableName,
 SQLWCHAR* FileName,
 SQLLEN IANAAppCodePage,
 SQLLEN ErrorTolerance,
 SQLLEN WarningTolerance,
 SQLWCHAR* LogFile)

The standard ODBC return codes are returned: SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_INVALID_HANDLE, and SQL_ERROR.

Purpose
ExportTableToFile (ANSI application) and ExportTableToFileW (Unicode application) bulk export a table to a
physical file. Both a bulk data file and a bulk configuration file are produced by this operation.The configuration
file has the same name as the data file, but with an XML extension. The bulk export operation can create a log
file and can also export to external files. See "External Overflow Files" for more information.The export operation
can be configured such that if any errors or warnings occur:

• The operation always completes

• The operation always terminates

• The operation terminates after a certain threshold of warnings or errors is exceeded.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2320

Chapter 14: DataDirect Bulk Load

Parameters

hdbc

is the driver’s connection handle, which is not the handle returned by SQLAllocHandle or
SQLAllocConnect. To obtain the driver's connection handle, the application must then use the
standard ODBC function SQLGetInfo (ODBC Conn Handle, SQL_DRIVER_HDBC).

TableName

is a null-terminated string that specifies the name of the source database table that contains the data
to be exported.

FileName

is a null-terminated string that specifies the path (relative or absolute) and file name of the bulk load
data file to which the data is to be exported. It also specifies the file name of the bulk configuration
file.The file name must be the fully qualified path to the bulk data file.This file must not already exist.
If the file already exists, an error is returned.

IANAAppCodePage

specifies the code page value to which the driver must convert all data for storage in the bulk data
file. See "Code Page Values" for details about IANAAppCodePage. See "Character Set Conversions"
for more information.

The default value on Windows is the current code page of the machine. On UNIX, Linux, and macOS
the default value is 4.

ErrorTolerance

specifies the number of errors to tolerate before an operation terminates. A value of 0 indicates that
no errors are tolerated; the operation fails when the first error is encountered. The default of -1
means that an infinite number of errors is tolerated. WarningTolerance specifies the number of
warnings to tolerate before an operation terminates. A value of 0 indicates that no warnings are
tolerated; the operation fails when the first warning is encountered.

The default of -1 means that an infinite number of warnings is tolerated.

LogFile

is a null-terminated character string that specifies the path (relative or absolute) and file name of the
bulk log file. Events logged to this file are:

• Total number of rows fetched

• A message for each row that failed to export

• Total number of rows that failed to export

• Total number of rows successfully exported

Information about the load is written to this file, preceded by a header. Information about the next
load is appended to the end of the file.

If LogFile is NULL, no log file is created.

321Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Example

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PExportTableToFile exportTableToFile;

char tableName[128];
char fileName[512];
char logFile[512];
int errorTolerance;
int warningTolerance;
int codePage;

/* Get the driver's connection handle from the DM. This handle must be used when calling
 directly into the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

exportTableToFile = (PExportTableToFile)
 resolveName (hmod, "ExportTableToFile");
if (! exportTableToFile) {
 printf ("Cannot find ExportTableToFile!\n");
 exit (255);
}

rc = (*exportTableToFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) fileName,
 codePage,
 errorTolerance, warningTolerance,
 (const SQLCHAR *) logFile);
if (rc == SQL_SUCCESS) {
 printf ("Export succeeded.\n");
}else {
 driverError (driverHandle, hmod);
}

See also
External Overflow Files on page 156
Code Page Values on page 267
Character Set Conversions on page 156

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2322

Chapter 14: DataDirect Bulk Load

ValidateTableFromFile and ValidateTableFromFileW

Syntax

SQLReturn
ValidateTableFromFile (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* ConfigFile,
 SQLCHAR* MessageList,
 SQLULEN MessageListSize,
 SQLULEN* NumMessages)
ValidateTableFromFileW (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* ConfigFile,
 SQLCHAR* MessageList,
 SQLULEN MessageListSize,
 SQLULEN* NumMessages)

The standard ODBC return codes are returned: SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_INVALID_HANDLE, and SQL_ERROR.

Purpose
ValidateTableFromFile (ANSI application) and ValidateTablefromFileW (Unicode application) verify the metadata
in the configuration file against the data structure of the target database table. See "Verification of the Bulk
Load Configuration File" for more detailed information.

Parameters

hdbc

is the driver’s connection handle, which is not the handle returned by SQLAllocHandle or
SQLAllocConnect. To obtain the driver's connection handle, the application must then use the
standard ODBC function SQLGetInfo (ODBC Conn Handle, SQL_DRIVER_HDBC).

TableName

is a null-terminated character string that specifies the name of the target database table into which
the data is to be loaded.

ConfigFile

is a null-terminated character string that specifies the path (relative or absolute) and file name of the
bulk configuration file.

MessageList

specifies a pointer to a buffer used to record any of the errors and warnings. MessageList must not
be null.

MessageListSize

specifies the maximum number of characters that can be written to the buffer to which MessageList
points. If the buffer to which MessageList points is not big enough to hold all of the messages
generated by the validation process, the validation is aborted and SQL_ERROR is returned.

323Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

NumMessages

contains the number of messages that were added to the buffer. This method reports the following
criteria:

• Check data types - Each column data type is checked to ensure no loss of data occurs. If a data
type mismatch is detected, the driver adds an entry to the MessageList in the following format:
Risk of data conversion loss: Destination column_number is of type x,
and source column_number is of type y.

• Check column sizes - Each column is checked for appropriate size. If column sizes are too small
in destination tables, the driver adds an entry to the MessageList in the following format:Possible
Data Truncation: Destination column_number is of size x while source
column_number is of size y.

• Check codepages - Each column is checked for appropriate code page alignment between the
source and destination. If a mismatch occurs, the driver adds an entry to the MessageList in the
following format: Destination column code page for column_number risks data
corruption if transposed without correct character conversion from source
column_number.

• Check Config Col Info - The destination metadata and the column metadata in the configuration
file are checked for consistency of items such as length for character and binary data types, the
character encoding code page for character types, precision and scale for numeric types, and
nullablity for all types. If any inconsistency is found, the driver adds an entry to the MessageList
in the following format:Destination column metadata for column_number has column
info mismatches from source column_number.

• Check Column Names and Mapping - The columns defined in the configuration file are compared
to the destination table columns based on the order of the columns. If the number of columns in
the configuration file and/or import file does not match the number of columns in the table, the
driver adds an entry to the MessageList in the following format:The number of destination
columns number does not match the number of source columns number.

The function returns an array of null-terminated strings in the buffer to which MessageList points
with an entry for each of these checks. If the driver determines that the information in the bulk load
configuration file matches the metadata of the destination table, a return code of SQL_SUCCESS
is returned and the MessageList remains empty.

If the driver determines that there are minor differences in the information in the bulk load configuration
file and the destination table, then SQL_SUCCESS_WITH_INFO is returned and the MessageList
is populated with information on the cause of the potential problems.

If the driver determines that the information in the bulk load information file cannot successfully be
loaded into the destination table, then a return code of SQL_ERROR is returned and the MessageList
is populated with information on the problems and mismatches between the source and destination.

Example

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PValidateTableFromFile validateTableFromFile;

char tableName[128];
char configFile[512];
char messageList[10240];
SQLLEN numMessages;

/* Get the driver's connection handle from the DM. This handle must be used when calling
 directly into the driver. */

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2324

Chapter 14: DataDirect Bulk Load

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

validateTableFromFile = (PValidateTableFromFile)
 resolveName (hmod, "ValidateTableFromFile");
if (!validateTableFromFile) {
 printf ("Cannot find ValidateTableFromFile!\n");
 exit (255);
}

messageList[0] = 0;
numMessages = 0;

rc = (*validateTableFromFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) configFile,
 (SQLCHAR *) messageList,
 sizeof (messageList),
 &numMessages);
printf ("%d message%s%s\n", numMessages,
 (numMessages == 0) ? "s" :
 ((numMessages == 1) ? " : " : "s : "),
 (numMessages > 0) ? messageList : "");
if (rc == SQL_SUCCESS) {
 printf ("Validate succeeded.\n");
}
else {
 driverError (driverHandle, hmod);
}

See also
Verification of the Bulk Load Configuration File on page 154

LoadTableFromFile and LoadTableFromFileW

Syntax

SQLReturn
LoadTableFromFile (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* FileName,
 SQLLEN ErrorTolerance,
 SQLLEN WarningTolerance,
 SQLCHAR* ConfigFile,
 SQLCHAR* LogFile,
 SQLCHAR* DiscardFile,
 SQLULEN LoadStart,
 SQLULEN LoadCount,
 SQLULEN ReadBufferSize)

325Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

LoadTableFromFileW (HDBC hdbc,
 SQLWCHAR* TableName,
 SQLWCHAR* FileName,
 SQLLEN ErrorTolerance,
 SQLLEN WarningTolerance,
 SQLWCHAR* ConfigFile,
 SQLWCHAR* LogFile,
 SQLWCHAR* DiscardFile,
 SQLULEN LoadStart,
 SQLULEN LoadCount,
 SQLULEN ReadBufferSize)

The standard ODBC return codes are returned: SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_INVALID_HANDLE, and SQL_ERROR.

Purpose
LoadTableFromFile (ANSI application) and LoadTablefromFileW (Unicode application) bulk load data from a
file to a table. The load operation can create a log file and can also create a discard file that contains rows
rejected during the load. The discard file is in the same format as the bulk load data file. After fixing reported
issues in the discard file, the bulk load can be reissued using the discard file as the bulk load data file.

The load operation can be configured such that if any errors or warnings occur:

• The operation always completes

• The operation always terminates

• The operation terminates after a certain threshold of warnings or errors is exceeded.

If a load fails, the LoadStart and LoadCount parameters can be used to control which rows are loaded when
a load is restarted after a failure.

Parameters
hdbc

is the driver’s connection handle, which is not the handle returned by SQLAllocHandle or SQLAllocConnect.
To obtain the driver's connection handle, the application must then use the standard ODBC function SQLGetInfo
(ODBC Conn Handle, SQL_DRIVER_HDBC).

TableName

is a null-terminated character string that specifies the name of the target database table into which the data is
to be loaded.

FileName

is a null-terminated string that specifies the path (relative or absolute) and file name of the bulk data file from
which the data is to be loaded. The file name must be the fully qualified path to the bulk data file.

ErrorTolerance

specifies the number of errors to tolerate before an operation terminates. A value of 0 indicates that no errors
are tolerated; the operation fails when the first error is encountered. The default of -1 means that an infinite
number of errors is tolerated.

WarningTolerance

specifies the number of warnings to tolerate before an operation terminates. A value of 0 indicates that no
warnings are tolerated; the operation fails when the first warning is encountered.The default of -1 means that
an infinite number of warnings is tolerated.

ConfigFile

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2326

Chapter 14: DataDirect Bulk Load

is a null-terminated character string that specifies the path (relative or absolute) and file name of the bulk
configuration file.

LogFile

is a null-terminated character string that specifies the path (relative or absolute) and file name of the bulk log
file. The file name must be the fully qualified path to the log file. Events logged to this file are:

• Total number of rows read

• Message for each row that failed to load.

• Total number of rows that failed to load

• Total number of rows successfully loaded

Information about the load is written to this file, preceded by a header. Information about the next load is
appended to the end of the file.

If LogFile is NULL, no log file is created.

DiscardFile is a null-terminated character string that specifies the path (relative or absolute) and file name
of the bulk discard file. The file name must be the fully qualified path to the discard file. Any row that cannot
be inserted into database as result of bulk load is added to this file, with the last row to be rejected added to
the end of the file.

Information about the load is written to this file, preceded by a header. Information about the next load is
appended to the end of the file.

If DiscardFile is NULL, no discard file is created.

LoadStart specifies the first row to be loaded from the data file. Rows are numbered starting with 1. For
example, when LoadStart=10, the first 9 rows of the file are skipped and the first row loaded is row 10. This
parameter can be used to restart a load after a failure.

LoadCount specifies the number of rows to be loaded from the data file. The bulk load operation loads rows
up to the value of LoadCount from the file to the database. It is valid for LoadCount to specify more rows than
exist in the data file. The bulk load operation completes successfully when either the LoadCount value has
been loaded or the end of the data file is reached.This parameter can be used in conjunction with LoadStart
to restart a load after a failure.

ReadBufferSize specifies the size, in KB, of the buffer that is used to read the bulk data file for a bulk load
operation. The default is 2048.

Example

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PLoadTableFromFile loadTableFromFile;
char tableName[128];
char fileName[512];
char configFile[512];
char logFile[512];
char discardFile[512];
int errorTolerance;
int warningTolerance;
int loadStart;
int loadCount;
int readBufferSize;

/* Get the driver's connection handle from the DM. This handle must be used when calling
 directly into the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);

327Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

loadTableFromFile = (PLoadTableFromFile)
 resolveName (hmod, "LoadTableFromFile");
if (! loadTableFromFile) {
 printf ("Cannot find LoadTableFromFile!\n");
 exit (255);
}
rc = (*loadTableFromFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) fileName,
 errorTolerance, warningTolerance,
 (const SQLCHAR *) configFile,
 (const SQLCHAR *) logFile,
 (const SQLCHAR *) discardFile,
 loadStart, loadCount,
 readBufferSize);
if (rc == SQL_SUCCESS) {
 printf ("Load succeeded.\n");
}
else {
 driverError (driverHandle, hmod);
}

DataDirect Bulk Load Statement Attributes

In addition to exporting tables with the ExportTableToFile methods, result sets can be exported to a bulk load
data file through the use of two DataDirect statement attributes, SQL_BULK_EXPORT_PARAMS and
SQL_BULK_EXPORT. SQL_BULK_EXPORT_PARAMS is used to configure information about where and
how the data is to be exported. SQL_BULK_EXPORT begins the bulk export operation.

SQL_BULK_EXPORT
The ValuePtr argument to SQLSetStmtAttr or SQLSetStmtAttrW when the attribute argument is
SQL_BULK_EXPORT is a pointer to a string that specifies the file name of the bulk load data file to which the
data in the result set will be exported.

Result set export occurs when the SQL_BULK_EXPORT statement attribute is set. If using the
SQL_BULK_EXPORT_PARAMS attribute to set values for the bulk export parameters, the
SQL_BULK_EXPORT_PARAMS attribute must be set prior to setting the SQL_BULK_EXPORT attribute. Once
set, the bulk export parameters remain set for the life of the statement. If the bulk export parameters are not
set prior to setting the SQL_BULK_EXPORT attribute, the driver uses the current driver code page value,
defaults EnableLogging to 1 (enabled), and defaults ErrorTolerance and WarningTolerance to -1 (infinite).

Both a bulk load data file and a bulk load configuration file are produced by this operation. The configuration
file has the same base name as the bulk load data file, but with an XML extension. The configuration file is
created in the same directory as the bulk load data file.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2328

Chapter 14: DataDirect Bulk Load

SQL_BULK_EXPORT_PARAMS
The ValuePtr argument to SQLSetStmtAttr or SQLSetStmtAttrW when the attribute argument is
SQL_BULK_EXPORT_PARAMS is a pointer to a BulkExportParams structure. The definitions of the fields in
the BulkExportParams structure are the same as the corresponding arguments in the ExportTableToFile and
ExportTableToFileW methods except that the generation of the log file is controlled by the EnableLogging field.
When EnableLogging is set to 1, the driver writes events that occur during the export to a log file. Events logged
to this file are:

• A message for each row that failed to export.

• Total number of rows fetched

• Total number of rows successfully exported

• Total number of rows that failed to export

The log file is located in the same directory as the bulk load data file and has the same base name as the bulk
load data file with a .log extension. When EnableLogging is set to 0, no logging takes place

If the bulk export parameters are not set prior to setting the SQL_BULK_EXPORT attribute, the driver uses
the current driver code page value, defaults EnableLogging to 1 (enabled), and defaults ErrorTolerance and
WarningTolerance to -1 (infinite).

The SQL_BULK_EXPORT_PARAMS structure is as follows:

struct BulkExportParams {
 SQLLEN Version; /* Must be the value 1 */
 SQLLEN IANAAppCodePage;
 SQLLEN EnableLogging;
 SQLLEN ErrorTolerance;
 SQLLEN WarningTolerance;
};

See also
ExportTableToFile and ExportTableToFileW on page 320

329Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2330

Chapter 14: DataDirect Bulk Load

15
Threading

The ODBC specification mandates that all drivers must be thread-safe, that is, drivers must not fail when
database requests are made on separate threads. It is a common misperception that issuing requests on
separate threads always results in improved throughput. Because of network transport and database server
limitations, some drivers serialize threaded requests to the server to ensure thread safety.

The ODBC 3.0 specification does not provide a method to find out how a driver services threaded requests,
although this information is useful to an application. All the Progress DataDirect for ODBC drivers provide this
information to the user through the SQLGetInfo information type 1028.

The result of calling SQLGetInfo with 1028 is a SQL_USMALLINT flag that denotes the session’s thread model.
A return value of 0 denotes that the session is fully thread-enabled and that all requests use the threaded
model. A return value of 1 denotes that the session is restricted at the connection level. Sessions of this type
are fully thread-enabled when simultaneous threaded requests are made with statement handles that do not
share the same connection handle. In this model, if multiple requests are made from the same connection, the
first request received by the driver is processed immediately and all subsequent requests are serialized. A
return value of 2 denotes that the session is thread-impaired and all requests are serialized by the driver.

Consider the following code fragment:

rc = SQLGetInfo (hdbc, 1028, &ThreadModel, NULL, NULL);

If (rc == SQL_SUCCESS) {
 // driver is a DataDirect driver that can report threading information

 if (ThreadModel == 0)
 // driver is unconditionally thread-enabled; application can take advantage of
 // threading

 else if (ThreadModel == 1)
 // driver is thread-enabled when thread requests are from different connections
 // some applications can take advantage of threading

 else if (ThreadModel == 2)
 // driver is thread-impaired; application should only use threads if it reduces

331Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

 // program complexity

}
else
 // driver is not guaranteed to be thread-safe; use threading at your own risk

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2332

Chapter 15: Threading

16
WorkAround Options

Progress DataDirect has included non-standard connection options your driver that enable you to take full
advantage of packaged ODBC-enabled applications requiring non-standard or extended behavior.

To use these options, we recommend that you create a separate user data source for each application.

Your driver features the Extended Options configuration field on the Advanced tab of the driver’s Setup dialog
box.You can use the Extended Options field to enter undocumented connection options when instructed by
Progress DataDirect Technical Support.

Alternatively, you can make the change by updating the Registry. After you create the data source,

• On Windows, using the registry editor REGEDIT, open the
HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI section of the registry. Select the data source
that you created.

• On UNIX/Linux/macOS, using a text editor, open the odbc.ini file to edit the data source that you created.

Add the string WorkArounds= (or WorkArounds2=) with a value of n (WorkArounds=n or WorkArounds2=n),
where the value n is the cumulative value of all options added together. For example, if you wanted to use both
WorkArounds=1 and WorkArounds=8, you would enter in the data source:

WorkArounds=9

Warning: Each of these options has potential side effects related to its use. An option should only be used to
address the specific problem for which it was designed. For example, WorkArounds=2 causes the driver to
report that database qualifiers are not supported, even when they are. As a result, applications that use qualifiers
may not perform correctly when this option is enabled.

333Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

The following list includes both WorkArounds and WorkArounds2.

WorkArounds=1. Enabling this option causes the driver to return 1 instead of 0 if the value for
SQL_CURSOR_COMMIT_BEHAVIOR or SQL_CURSOR_ROLLBACK_BEHAVIOR is 0. Statements are
prepared again by the driver.

WorkArounds=2. Enabling this option causes the driver to report that database qualifiers are not supported.
Some applications cannot process database qualifiers.

WorkArounds=8. Enabling this option causes the driver to return 1 instead of -1 for SQLRowCount. If an
ODBC driver cannot determine the number of rows affected by an Insert, Update, or Delete statement, it may
return -1 in SQLRowCount. This may cause an error in some products.

WorkArounds=16. Enabling this option causes the driver not to return an INDEX_QUALIFIER. For SQLStatistics,
if an ODBC driver reports an INDEX_QUALIFIER that contains a period, some applications return a "tablename
is not a valid name" error.

WorkArounds=32. Enabling this option causes the driver to re-bind columns after calling SQLExecute for
prepared statements.

WorkArounds=64. Enabling this option results in a column name of Cposition where position is the ordinal
position in the result set. For example, "SELECT col1, col2+col3 FROM table1" produces the column
names "col1" and C2. For result columns that are expressions, SQLColAttributes/SQL_COLUMN_NAME
returns an empty string. Use this option for applications that cannot process empty string column names.

WorkArounds=256. Enabling this option causes the value of SQLGetInfo/SQL_ACTIVE_CONNECTIONS to
be returned as 1.

WorkArounds=512. Enabling this option prevents ROWID results.This option forces the SQLSpecialColumns
function to return a unique index as returned from SQLStatistics.

WorkArounds=2048. Enabling this option causes DATABASE= instead of DB= to be returned. For some data
sources, Microsoft Access performs more efficiently when the output connection string of SQLDriverConnect
returns DATABASE= instead of DB=.

WorkArounds=65536. Enabling this option strips trailing zeros from decimal results, which prevents Microsoft
Access from issuing an error when decimal columns containing trailing zeros are included in the unique index.

WorkArounds=131072. Enabling this option turns all occurrences of the double quote character (") into the
accent grave character (`). Some applications always quote identifiers with double quotes. Double quoting can
cause problems for data sources that do not return SQLGetInfo/SQL_IDENTIFIER_QUOTE_CHAR =
double_quote.

WorkArounds=524288. Enabling this option forces the maximum precision/scale settings. The Microsoft
Foundation Classes (MFC) bind all SQL_DECIMAL parameters with a fixed precision and scale, which can
cause truncation errors.

WorkArounds=1048576. Enabling this option overrides the specified precision and sets the precision to 2000.
Some applications incorrectly specify a precision of 0 for character types when the value will be
SQL_NULL_DATA.

WorkArounds=2097152. Enabling this option overrides the specified precision and sets the precision to 2000.
Some applications incorrectly specify a precision of -1 for character types.

WorkArounds=4194304. Enabling this option converts, for PowerBuilder users, all catalog function arguments
to uppercase unless they are quoted.

WorkArounds=16777216. Enabling this option allows MS Access to retrieve Unicode data types as it expects
the default conversion to be to SQL_C_CHAR and not SQL_C_WCHAR.

WorkArounds=33554432. Enabling this option prevents MS Access from failing when SQLError returns an
extremely long error message.

WorkArounds=67108864. Enabling this option allows parameter bindings to work correctly with MSDASQL.

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2334

Chapter 16: WorkAround Options

WorkArounds=536870912. Enabling this option allows re-binding of parameters after calling SQLExecute for
prepared statements.

WorkArounds=1073741824. Enabling this option addresses the assumption by the application that ORDER
BY columns do not have to be in the SELECT list. This assumption may be incorrect for data sources such as
Informix.

WorkArounds2=2. Enabling this option causes the driver to ignore the ColumnSize/DecimalDigits specified
by the application and use the database defaults instead. Some applications incorrectly specify the
ColumnSize/DecimalDigits when binding timestamp parameters.

WorkArounds2=4. Enabling this option reverses the order in which Microsoft Access returns native types so
that Access uses the most appropriate native type. Microsoft Access uses the last native type mapping, as
returned by SQLGetTypeInfo, for a given SQL type.

WorkArounds2=8. Enabling this option causes the driver to add the bindoffset in the ARD to the pointers
returned by SQLParamData. This is to work around an MSDASQL problem.

WorkArounds2=16. Enabling this option causes the driver to ignore calls to SQLFreeStmt(RESET_PARAMS)
and only return success without taking other action. It also causes parameter validation not to use the bind
offset when validating the charoctetlength buffer. This is to work around a MSDASQL problem.

WorkArounds2=24. Enabling this option allows a flat-file driver, such as dBASE, to operate properly under
MSDASQL.

WorkArounds2=32. Enabling this option appends "DSN=" to a connection string if it is not already included.
Microsoft Access requires "DSN" to be included in a connection string.

WorkArounds2=128. Enabling this option causes 0 to be returned by
SQLGetInfo(SQL_ACTIVE_STATEMENTS). Some applications open extra connections if
SQLGetInfo(SQL_ACTIVE_STATEMENTS) does not return 0.

WorkArounds2=256. Enabling this option causes the driver to return Buffer Size for Long Data on calls to
SQLGetData with a buffer size of 0 on columns of SQL type SQL_LONGVARCHAR or SQL_LONGVARBINARY.
Applications should always set this workaround when using MSDASQL and retrieving long data.

WorkArounds2=512. Enabling this option causes the flat-file drivers to return old literal prefixes and suffixes
for date, time, and timestamp data types. Microsoft Query 2000 does not correctly handle the ODBC escapes
that are currently returned as literal prefix and literal suffix.

WorkArounds2=1024. Enabling this option causes the driver to return "N" for
SQLGetInfo(SQL_MULT_RESULT_SETS). ADO incorrectly interprets SQLGetInfo(SQL_MULT_RESULT_SETS)
to mean that the contents of the last result set returned from a stored procedure are the output parameters for
the stored procedure.

WorkArounds2=2048. Enabling this option causes the driver to accept 2.x SQL type defines as valid. ODBC
3.x applications that use the ODBC cursor library receive errors on bindings for SQL_DATE, SQL_TIME, and
SQL_TIMESTAMP columns. The cursor library incorrectly rebinds these columns with the ODBC 2.x type
defines.

WorkArounds2=4096. Enabling this option causes the driver to internally adjust the length of empty strings.
The ODBC Driver Manager incorrectly translates lengths of empty strings when a Unicode-enabled application
uses a non-Unicode driver. Use this workaround only if your application is Unicode-enabled.

WorkArounds2=8192. Enabling this option causes Microsoft Access not to pass the error -7748. Microsoft
Access only asks for data as a two-byte SQL_C_WCHAR, which is an insufficient buffer size to store the UCS2
character and the null terminator; thus, the driver returns a warning, "01004 Data truncated" and returns a null
character to Microsoft Access. Microsoft Access then passes error -7748.

335Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2336

Chapter 16: WorkAround Options

Index

32-bit driver
UNIX/Linux requirements 37

64-bit driver
UNIX/Linux requirements 39
Windows support 36

A
about

select failover 126
Accounting Info connection option 183
Action connection option 184
adding connections to a connection pool 146
address, IP 52
Administrator

macOS ODBC 165
macOS ODBC and tracing 165
Windows ODBC and tracing 164

Administrator, Data Source
UNIX and Linux 70
Windows 24

Advanced Security tab 108
Advanced tab 80
AIX, See UNIX and Linux
AllowedOpenSSLVersions connection option 184
alternate database servers

about 124
guidelines for specifying 127

Alternate Servers connection option 186
Application Name connection option 186
Application Using Threads connection option 187–188,
209
array binding, use in bulk load operations 158
Array Size connection option 188
arrays of parameter values, passing 300
arrays of parameters 49
authentication

SSL client 139
SSL server 138
user 133

authentication, Oracle Internet Directory (OID) 135
authentication, Oracle Wallet SSL 135–136
Autocommit mode 302

B
batch inserts, using bulk load for 158
Batch Size connection option 189
bound columns 299
bulk

loading to a database 152

Bulk Binary Threshold connection option 190
Bulk Character Threshold connection option 191
Bulk Export method 150
bulk load

batch inserts 158
bulk data configuration file 154
configuration file 328
data file 328
determining the protocol 158
exporting data from a database 151
external overflow file 156
functions

bulk errors 318
bulk export 320
bulk load 325
bulk load validation 323
utility 318

overview 149
sample application 156
statement attributes 328
validating files 153
validating metadata in the bulk load configuration
file 323
verifying the configuration file 154

Bulk Load method 150
Bulk Options connection option 192
Bulk tab 99

C
Cached Cursor Limit connection option 193
Cached Description Limit connection option 193
caching information to improve performance 296
call load, reducing 299
Catalog Functions Include Synonyms connection option
194
catalog functions, using 296
Catalog Options connection option 195
changes to behavior for release 8.0.0 14
changes to behavior for release 8.0.1 14
changes to behavior for release 8.0.2 14
character encoding 285
character set conversions 156
characters, unexpected 122
cipher suite, encryption

SSL v3 encryption cipher suite 309
TLS v1 encryption cipher suite 309
when driver cannot negotiate SSL v3 or TLS v1 309

ClearPool and ClearAllPools methods 146
client code page, See code pages
Client Host Name connection option 195

337Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Index

Client ID connection option 196
client information

about 132
how databases store 132
location used for storing 132
storing 132

client load balancing, about 127
Client Monitoring tab 106
Client User connection option 197
Close() method

effect on the connection string 146
code pages

IANAAppCodePage attribute 267
IANAAppCodePage values 267

comma-separated value (CSV) format file
character set conversions 156
use in bulk load 154

configuration file
bulk data 154

configuring a data source
macOS 28
UNIX and Linux 26, 58
using a GUI 75

connecting
proxy server 119, 121

connecting via connection string 113
connection attribute

AccountingInfo 183
Action 184
AllowedOpenSSLVersions 184
AlternateServers 186
ApplicationName 186
ApplicationUsingThreads 187–188, 209
ArraySize 188
BulkBinaryThreshold 190
BulkCharacterThreshold 191
BulkLoadBatchSize 189
BulkLoadFieldDelimiter 221
BulkLoadOptions 192
BulkLoadRecordDelimiter 246
CachedCursorLimit 193
CachedDescriptionLimit 193
CatalogIncludesSynonyms 194
CatalogOptions 195
ClientHostName 195
ClientID 196
ClientUser 197
ConnectionRetryCount 199
ConnectionRetryDelay 200
CredentialsWalletEntry 201
CredentialsWalletPassword 260
CredentialsWalletPath 202
CryptoLibName 204
CryptoProtocolVersion 203
DataIntegrityLevel 205
DataIntegrityTypes 206

connection attribute (continued)
DataSourceName 207
DefaultLongDataBuffLen 207
DescribeAtPrepare 208
Description 208
EnableBulkLoad 210
EnableDescribeParam 213
EnableNcharSupport 211
EnableScrollableCursors 212
EnableServerResultCache 212
EnableStaticCursorsForLongData 214
EnableTimestampwithTimezone 214
EncryptionLevel 215
EncryptionMethod 216
EncryptionTypes 217
FailoverGranularity 218
FailoverMode 219
FailoverPreconnect 220
FetchTSWTZasTimestamp 220
GSSClient 222
HostName 222
HostNameInCertificate 223
IANAAppCodePage 224
ImpersonateUser 225
InitializationString 226
KeyPassword 226
Keystore 227
KeystorePassword 228
LDAPDistinguishedName 228
LoadBalanceTimeout 230
LoadBalancing 229
LOBPrefetchSize 231
LocalTimezoneOffset 231
LockTimeout 232
LoginTimeout 233
LogonID 259
MaxPoolSize 234
MinPoolSize 234
Module 235
Password 236
Pooling 198
PortNumber 237
PRNGSeedFile 242
PRNGSeedSource 243
ProcedureRetResults 244
ProgramID 245
QueryTimeout 246
ReportCodepageConversionErrors 247
ReportRecycleBin 248
SDUSize 248
ServerName 249
ServerType 250
ServiceName 251
SID 252
SSLLibName 253
SupportBinaryXML 254

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2338

Index

connection attribute (continued)
TimestampEscapeMapping 255
TNSNamesFile 256
Truststore 257
TruststorePassword 258
UseCurrentSchema 258
ValidateServerCertificate 259
WireProtocolMode 261

connection attributes
KeepAlive 254
ProxyHost 237
ProxyMode 238
ProxyPassword 239
ProxyPort 240
ProxyUser 241

connection failover
about 123–124
connection retry and 124
load balancing and 127

connection handles 302
connection issues 170
connection options

Accounting Info 183, 254
Action 184
AllowedOpenSSLVersions 184
Alternate Servers 186
Application Name 186
Application Using Threads 187–188, 209
Array Size 188
Batch Size 189
Bulk Binary Threshold 190
Bulk Character Threshold 191
Bulk Options 192
Cached Cursor Limit 193
Cached Description Limit 193
Catalog Functions Include Synonyms 194
Catalog Options 195
Client Host Name 195
Client ID 196
Client User 197
Connection Pooling 198
Connection Retry Count 199
Connection Retry Delay 200
CredentialsWalletEntry 201
CredentialsWalletPassword 260
CredentialsWalletPath 202
Crypto Protocol Version 203
CryptoLibName 204
Data Integrity Level 205
Data Integrity Types 206
Data Source Name 207
Default Buffer Size for Long/LOB Columns (in Kb)
207
Describe at Prepare 208
Description 208
Enable Bulk Load 210

connection options (continued)
Enable N-CHAR Support 211
Enable Scrollable Cursors 212
Enable Server Result Cache 212
Enable SQLDescribeParam 213
Enable Static Cursors for Long Data 214
Enable Timestamp with Timezone 214
Encryption Level 215
Encryption Method 216
Encryption Types 217
Failover Granularity 218
Failover Mode 219
Failover Preconnect 220
Fetch TSWTZ as Timestamp 220
Field Delimiter 221
for Bulk Load 159
for DataDirect Bulk Load 157
for failover 128
for security 141
GSS Client Library 222
Host 222
Host Name In Certificate 223
IANAAppCodePage 224
Impersonate User 225
Initialization String 226
Key Password 226
Key Store 227
Key Store Password 228
LDAP Distinguished Name 228
Load Balancing 229
LoadBalance Timeout 230
LOB Prefetch Size 231
Local Timezone Offset 231
Lock Timeout 232
Login Timeout 233
Max Pool Size 234
Min Pool Size 234
Module 235
Password 236
Port Number 237
PRNGSeedFile 242
PRNGSeedSource 243
Procedure Returns Results 244
Program ID 245
Proxy Host 237
Proxy Mode 238
Proxy Password 239
Proxy Port 240
Proxy User 241
Query Timeout 246
Record Delimiter 246
Report Codepage Conversion Errors 247
Report Recycle Bin 248
required 75
SDU Size 248
Server Name 249

339Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Index

connection options (continued)
Server Process Type 250
Service Name 251
SID 252
SSLLibName 253
TCP Keep Alive 254
Timestamp Escape Mapping 255
TNSNames File 256
Trust Store 257
Trust Store Password 258
Use Current Schema for SQLProcedures 258
User Name 259
Validate Server Certificate 259
Wire Protocol Mode 261

connection pool
adding connections 146
ClearPool and ClearAllPools methods 146
creating 146
dead connections 147
removing connections 146
returning connections to 146
when a physical connection to a server is lost 147

connection pooling 145
Connection Pooling

connection properties
for connection pooling 148

Connection Pooling connection option 198
Connection Reset 198
connection retry

about 124
Connection Retry Count connection option 199
Connection Retry Delay connection option 200
connection retry, about 128
connection string attributes

Oracle Wire Protocol 175
connection string options

effect of Close and Dispose methods 146
connections

optimizing 302
connections supported 52
contacting Technical Support 20
Credentials Wallet Entry connection option 201
Credentials Wallet Path connection option 202
Crypto Protocol Version connection option 203
CryptoLibName connection option 204
CSV, See comma-separated value
cursor library, performance implications of using 301

D
data encryption 85, 137
data integrity 137, 141
Data Integrity Level connection option 205
Data Integrity Types connection option 206
data retrieval, optimizing 298

data source
configuring

macOS 28, 66
UNIX and Linux 25, 58
Windows 24

connecting via connection string 113
connecting via logon dialog box 113

Data Source Administrator
macOS 70
Windows 24

Data Source Name connection option 207
data types

choosing 300
retrieving information 48

database connections, testing 168
database versions supported 33
DataDirect Bulk Load

about 149
character set conversions 156
external overflow file 156

date and time functions 280
ddtestlib tool

macOS 65
dead connections in a connection pool 147
dedicated bulk protocol 158
Default Buffer Size for Long/LOB Columns (in Kb)
connection option 207
Describe at Prepare connection option 208
Description connection option 208
determining optimal set of columns 303
diagnostic tools 163
dirty reads 306
Dispose() method, effect on the connection string 146
Distributed Transaction Coordinator 53
distributed transactions 53, 303
DNS-less connections 63
documentation, about 19
double-byte character sets in UNIX and Linux 285
driver

API and scalar functions 273
code page values 267
connections supported 52
ODBC compliance 34
optimizing application performance 295
statements supported 52
supported features 51
testing the connection 25
the driver (overview) 55
threading 331
using DataDirect bulk load 317
version string information 43

Driver Manager
macOS 28, 65
support 73

driver requirements 34

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2340

Index

E
Enable Bulk Load connection option 210
Enable N-CHAR Support connection option 211
Enable Scrollable Cursors connection option 212
Enable Server Result Cache connection option 212
Enable SQLDescribeParam connection option 213
Enable Static Cursors for Long Data connection option
214
Enable Timestamp with Timezone connection option 214
enabling tracing 164
encryption

data 137
Oracle 137
SSL 138

encryption cipher suites 309
Encryption Level connection option 215
Encryption Method connection option 216
Encryption Types connection option 217
environment

variables 56
environment variable, library path 171
environments supported 35
error messages

general 169
macOS 169
UNIX and Linux 169
Windows 169

example
bulk load sample application 156
character set conversions 156

example application 168
executing SQL 168
exporting data from a database 151
exporting result sets to a bulk load data file 328
ExportTableToFile 320
ExportTableToFileW 320
extended connection failover

about 125
Extended Options 80, 333
external overflow file 156

F
Failover

configuring 94
Failover Granularity connection option 218
Failover Mode connection option 219
Failover Preconnect connection option 220
Failover Tab 94
Fetch TSWTZ as Timestamp connection option 220
Field Delimiter connection option 221
file data sources 64
file names

Windows 37

functionality
changes 14
new 14

functions, ODBC
DataDirect functions for bulk operations 317
selecting for performance 300

G
General Tab 75
GetBulkDiagRec 318
GetBulkDiagRecW 318
GSS Client Library connection option 222
guidelines for primary and alternate servers 127

H
handles

connection 302
statement 302

Host connection option 222
Host Name In Certificate connection option 223
HP-UX, See UNIX and Linux

I
IANAAppCodePage

connection option values 267
IANAAppCodePage connection option 224
Impersonate User connection option 225
improving

database performance 263
index performance 263
join performance 266
ODBC application performance 173, 295
record selection performance 264

indexes
deciding which to create 265
improving performance 263
overview 264

indexing multiple fields 265
Initialization String connection option 226
integrity 141
internationalization 283
interoperability issues 172
iODBC Demo 168
iODBC Driver Manager 28, 65
IP addresses 52
IPv4 52
IPv6 52
isolation levels

about 306
read committed 306
read uncommitted 306
repeatable read 306

341Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Index

isolation levels (continued)
serializable 306

isolation levels and data consistency
compared 306
dirty reads 306
non-repeatable reads 306
phantom reads 306

ivtestlib tool 167

K
KeepAlive

connection attribute 254
Kerberos authentication

kinit command 134
Ticket Granting Ticket (TGT) 134

Key Password connection option 226
Key Store connection option 227
Key Store Password connection option 228
kinit command, Kerberos authentication 134

L
LDAP 119
LDAP Distinguished Name connection option 228
library path environment variable 171
Linux, See UNIX and Linux
listener.ora 251
Load Balancing connection option 229
load balancing, about 127
LoadBalance Timeout connection option 230
LoadTableFromFile 325
LoadTableFromFileW 325
LOB Prefetch Size connection option 231
Local Timezone Offset connection option 231
locale 284
localization 283
location used for storing client information for a
connection 132
Lock Timeout connection option 232
locking 305
locking levels 49
locking modes and levels 307
Login Timeout connection option 233
long data, retrieving 298
lost connections

extended connection failover 125
recovering work in progress 126
select failover 126

M
macOS

configuring a data source 28

macOS (continued)
configuring through the system information (odbc.ini)
file 66
Data Source Administrator 70
data source configuration 28, 66
driver manager 28, 65
driver names 43
environment

ddtestlib tool 65
introduction 65
ODBCINST 75
system information file (.odbc.ini) 66
variables 74

error messages 169
operating systems, supported 42
system information (odbc.ini) file, configuring through
66
system requirements 42

macOS iODBC Administrator and tracing 165
managing connections 302
materialized views 54
Max Pool Size connection option 234
MIBenum value 267
Min Pool Size connection option 234
Module connection option 235
MTS support 53

N
New Features and Enhancements for Release 8.0.0 14
New Features and Enhancements for Release 8.0.1 14
New Features and Enhancements for Release 8.0.2 14
non-repeatable reads 306
NTLM authentication 133
numeric functions 279

O
ODBC

API functions 273
call load, reducing 299
designing for performance 295
functions, selecting for performance 300
how the architecture works 32
scalar functions 276
specification 34

ODBC application performance design 173
ODBC conformance 34
ODBC Test 168
ODBC Trace 163
odbc.ini

encoding 292
macOS 68
sample 60, 68
UNIX/Linux 60

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2342

Index

odbc.ini (system information) file
configuring with

macOS 66
odbc.ini file

controlling tracing with 166
odbcinst.ini

encoding 292
odbcinst.ini file

sample file 63
using 63

OEM to ANSI translation 160
Open Database Connectivity, See ODBC specification
OpenSSL cipher suites

driver support 138
OpenSSL cipher suites, mapping 309
OpenSSL Library

designating 139
operating systems

macOS 42
UNIX and Linux

supported 39
UNIX/Linux

32-bit 37
Windows

supported 35–36
optimization, performance 295
Oracle

encryption
Oracle Advanced Security 137

encryption, configuring 140
Wallet 140

Oracle Advanced Security
data integrity 137
encryption 137

Oracle Real Application Clusters (RAC) 52
Oracle System Identifier, specifying 252
Oracle Wire Protocol driver

connection string attributes 175
materialized views 54
stored procedures 53

OS authentication 53, 135
overflow files for bulk load operations 156

P
parameter arrays 49
parameter values, passing arrays of 300
Password connection option 236
performance 173
performance considerations 115
performance optimization

avoiding catalog functions 296
avoiding search patterns 297
commits in transactions 302
managing connections 302
overview 295

performance optimization (continued)
reducing the size of retrieved data 298
retrieving long data 298
using a dummy query 297
using bound columns 299

Performance tab 90
performance, improving

database using indexes 263
index 263
join 266
record selection 264

phantom reads 306
Pooling tab 97
Port Number connection option 237
positioned updates and deletes 303
primary server, specifying guidelines for 127
PRNGSeedFile connection option 242
PRNGSeedSource connection option 243
Procedure Returns Results connection option 244
Program ID connection option 245
Proxy Host connection option 237
Proxy Mode connection option 238
Proxy Password connection option 239
Proxy Port connection option 240
proxy server, connecting through 119, 121
Proxy tab 111
Proxy User connection option 241

Q
Query Timeout connection option 246
quick start 23

R
read committed 306
read uncommitted 306
Real Application Clusters (RAC) 52
Record Delimiter connection option 246
removing connections from a connection pool 146
repeatable read 306
Report Codepage Conversion Errors connection option
247
Report Recycle Bin connection option 248
retrieving data type information 48
retrieving data, optimizing 298

S
scalar functions, ODBC 276
scrollable cursors 301
SDU Size connection option 248
search patterns, avoiding 297
Secure Sockets Layer, See SSL

343Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Index

security
configuring 85
encryption and data integrity 141

Security Tab 85
select failover 126
serializable isolation level 306
Server Name connection option 249
Server Process Type connection option 250
service class 115
Service Name connection option 251
setup issues 170
SID 252
SID connection option 252
Solaris, See UNIX and Linux
SQL

executing 168
SQL support 53
SQLExecDirect, advantages of using 300
SQLFetch, disadvantage of using 299
SQLSpecialColumns, determining optimal set of columns
303
SSL

client authentication 139
configuring

Oracle Wallet 140
encryption 138
encryption cipher suites 309
server authentication 138

SSLLibName connection option 253
standards, ODBC specification compliance 34
statement attributes for DataDirect bulk load operations
328
statement handles, using to manage SQL statements
302
statements supported 52
static cursors 301
stored procedures

Oracle Wire Protocol 53
stored results

Oracle Wire Protocol 53
storing client information 132
string functions 277
Support Binary XML connection option 254
supported database versions 33
system functions 282
system identifier 252
system information file (.odbc.ini)

macOS 66

T
TCP Keep Alive

connection option 254
Technical Support, contacting 20
test connect

UNIX and Linux 27

testing database connections 168
testing the connection

macOS 29
threading, overview 331
Ticket Granting Ticket (TGT), Kerberos authentication
134
time functions 280
Timestamp Escape Mapping connection option 255
TLS v1 encryption cipher suite 309
TNSNames File connection option 256
tools

diagnostic 163
other 168

trace log 163
tracing

creating a trace log 163
enabling with macOS iODBC Administrator 165
enabling with system information file 166
enabling with Windows ODBC Administrator 164
macOS

iODBC 72
transactions, managing commits 302
troubleshooting 163, 170
Trust Store connection option 257
Trust Store Password connection option 258

U
UCS-2 285
undocumented connection options 80
unexpected characters 119, 122
Unicode

character encoding 285
ODBC drivers 287
support in databases 286
support in ODBC 286

Unicode support
macOS 74

UNIX and Linux
configuring a data source 26, 58
data source configuration 25, 58
double-byte character sets 285
driver names 41
environment

DD_INSTALLDIR 58
introduction 56
library search path 56
ODBCINI 57
ODBCINST 57
system information file (.odbc.ini) 58

error messages 169
system requirements 37

UNIX/Linux requirements
32-bit driver 37
64-bit driver 39

updates, optimizing 302

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2344

Index

Use Current Schema for SQLProcedures connection
option 258
user authentication 133
User Name connection option 259
using

bulk load for batch inserts 158
the driver (overview) 55

UTF-16 285
UTF-16 Applications 65
UTF-32 Applications 74
UTF-8 285

V
Validate Server Certificate connection option 259
ValidateTableFromFile 323
ValidateTableFromFileW 323
validating bulk load files 153
validating metadata in the bulk load configuration file 323
verifying the bulk load configuration file 154
version string information 43

views
materialized 54

W
Wallet Password connection option 260
What's new? 14
Windows

configuring a data source using a GUI 75
Data Source Administrator 24
data source configuration 24
driver names 37
error messages 169
system requirements 35

Windows ODBC Administrator and tracing 164
Wire Protocol Mode connection option 261
WorkAround options for ODBC drivers 333

X
XA Protocol 53
XML data type 46

345Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2

Index

Progress DataDirect for ODBC for Oracle Wire Protocol Driver: User's Guide and Reference: Version 8.0.2346

Index

	Table of Contents
	Preface
	Welcome to the Progress DataDirect for ODBC Oracle Wire Protocol Driver: Version 8.0.2
	What's New in this Release?
	Conventions Used in This Guide
	About the Product Documentation
	Contacting Technical Support

	Getting Started
	Configuring and Connecting on Windows
	Configuring a Data Source
	Testing the Connection

	Configuring and Connecting on UNIX and Linux
	Environment Configuration
	Test Loading the Driver
	Configuring a Data Source in the System Information File
	Testing the Connection

	Configuring and Connecting on macOS
	iODBC Driver Manager
	Configuring a Data Source
	Testing the Connection

	Accessing Data With Third-Party Applications

	What Is ODBC?
	How Does It Work?
	Why Do Application Developers Need ODBC?

	About the Oracle Wire Protocol Driver
	Driver Requirements
	ODBC Compliance
	Support for Multiple Environments
	Support for Windows Environments
	32-Bit Driver Requirements for Windows
	64-Bit Driver Requirements for Windows
	Setup of the Driver
	Driver File Names for Windows

	Support for UNIX and Linux Environments
	32-Bit Driver Requirements for UNIX/Linux
	64-Bit Drivers Requirements for UNIX/Linux
	AIX
	HP-UX 11 aCC
	Linux
	Oracle Solaris
	Setup of the Environment and the Drivers
	Driver File Names for UNIX/Linux

	Support for macOS Environments
	32-Bit Driver Requirements for macOS
	64-bit Driver Requirements for macOS
	Setup of the Environment and the Driver
	Driver Names for macOS

	Version String Information
	getFileVersionString Function

	Data Types
	XMLType
	Examples

	Retrieving Data Type Information

	Isolation and Lock Levels Supported
	Using Parameter Arrays

	Supported Features
	Unicode Support
	Using IP Addresses
	Number of Connections and Statements Supported
	Support for Oracle RAC
	SQL Support
	MTS Support
	OS Authentication
	Stored Procedure Results
	Support of Materialized Views

	Using the Driver
	Configuring and Connecting to Data Sources
	Configuring the Product on UNIX/Linux
	Environment Variables
	Library Search Path
	ODBCINI
	ODBCINST
	DD_INSTALLDIR

	Data Source Configuration on UNIX/Linux
	Configuring a Data Source in the System Information File
	Sample Default odbc.ini File

	The Example Application
	DSN-less Connections
	Sample odbcinst.ini File

	File Data Sources
	UTF-16 Applications on UNIX and Linux

	Configuring the Product on macOS
	Installing the Driver Manager for macOS
	The Test Loading Tool
	Data Source Configuration on macOS
	Configuration Through the System Information (odbc.ini) File
	Sample Default odbc.ini File

	Data Source Configuration through a GUI (macOS)
	Tracing Using the iODBC Data Source Administrator

	The example Application
	DSN-less Connections
	Sample odbcinst.ini File

	File Data Sources
	Supported Character Encoding for macOS Applications
	Environment Variables
	ODBCINST

	Data Source Configuration on Windows
	Advanced Tab
	Security Tab
	Performance Tab
	Failover Tab
	Pooling Tab
	Bulk tab
	Client Monitoring Tab
	Advanced Security Tab
	Proxy Tab

	Using a Connection String
	Using a Logon Dialog Box

	Performance Considerations
	Using LDAP
	Connecting through a proxy server
	Oracle Connection Manager

	Unexpected Characters
	Using Failover
	Connection Failover
	Extended Connection Failover
	Select Connection Failover
	Guidelines for Primary and Alternate Servers
	Using Client Load Balancing
	Using Connection Retry
	Configuring Failover-Related Options
	A Connection String Example
	An odbc.ini File Example

	Using Client Information
	How Databases Store Client Information
	Storing Client Information

	Using Security
	Authentication
	Kerberos Requirements
	Kerberos Authentication
	OS Authentication
	Oracle Internet Directory (OID)
	Oracle Wallet SSL Authentication
	Oracle Wallet Password Store

	Data Encryption Across the Network
	Data Encryption and Integrity
	SSL Encryption
	Certificates
	SSL Server Authentication
	SSL Client Authentication
	Designating an OpenSSL Library

	Using Oracle Wallet as a Keystore
	Oracle Advanced Security

	Summary of Security-Related Options

	Using DataDirect Connection Pooling
	Creating a Connection Pool
	Adding Connections to a Pool
	Removing Connections from a Pool
	Handling Dead Connections in a Pool
	Connection Pool Statistics
	Summary of Pooling-Related Options

	Using DataDirect Bulk Load
	Bulk Export and Load Methods
	Exporting Data from a Database
	Bulk Loading to a Database
	The Bulk Load Configuration File
	Bulk Load Configuration File Schema for Oracle
	Verification of the Bulk Load Configuration File

	Sample Applications
	Character Set Conversions
	External Overflow Files
	Limitations
	Summary of Related Options for DataDirect Bulk Load

	Using Bulk Load for Batch Inserts
	Determining the Bulk Load Protocol
	Limitations
	Summary of Related Options for Bulk Load for Batch Inserts

	Persisting a Result Set as an XML Data File
	Using the Windows XML Persistence Demo Tool
	Using the UNIX/Linux XML Persistence Demo Tool

	Troubleshooting
	Diagnostic Tools
	ODBC Trace
	Creating a Trace Log
	Enabling Tracing
	Windows ODBC Administrator
	macOS iODBC Administrator
	System Information (odbc.ini) File

	The Test Loading Tool
	ODBC Test
	iODBC Demo and iODBC Test
	The Example Application
	Other Tools

	Error Messages
	Troubleshooting
	Setup/Connection Issues
	Troubleshooting the Issue

	Interoperability Issues
	Troubleshooting the Issue

	Performance Issues

	Connection Option Descriptions
	Accounting Info
	Action
	AllowedOpenSSLVersions
	Alternate Servers
	Application Name
	Application Using Threads
	Array Size
	Authentication Method
	Batch Size
	Bulk Binary Threshold
	Bulk Character Threshold
	Bulk Options
	Cached Cursor Limit
	Cached Description Limit
	Catalog Functions Include Synonyms
	Catalog Options
	Client Host Name
	Client ID
	Client User
	Connection Pooling
	Connection Reset
	Connection Retry Count
	Connection Retry Delay
	Credentials Wallet Entry
	Credentials Wallet Path
	Crypto Protocol Version
	CryptoLibName
	Data Integrity Level
	Data Integrity Types
	Data Source Name
	Default Buffer Size for Long/LOB Columns (in Kb)
	Describe at Prepare
	Description
	Edition Name
	Enable Bulk Load
	Enable N-CHAR Support
	Enable Scrollable Cursors
	Enable Server Result Cache
	Enable SQLDescribeParam
	Enable Static Cursors for Long Data
	Enable Timestamp with Timezone
	Encryption Level
	Encryption Method
	Encryption Types
	Failover Granularity
	Failover Mode
	Failover Preconnect
	Fetch TSWTZ as Timestamp
	Field Delimiter
	GSS Client Library
	Host
	Host Name In Certificate
	IANAAppCodePage
	Impersonate User
	Initialization String
	Key Password
	Key Store
	Key Store Password
	LDAP Distinguished Name
	Load Balancing
	LoadBalance Timeout
	LOB Prefetch Size
	Local Timezone Offset
	Lock Timeout
	Login Timeout
	Max Pool Size
	Min Pool Size
	Module
	Password
	Port Number
	Proxy Host
	Proxy Mode
	Proxy Password
	Proxy Port
	Proxy User
	PRNGSeedFile
	PRNGSeedSource
	Procedure Returns Results
	Program ID
	Query Timeout
	Record Delimiter
	Report Codepage Conversion Errors
	Report Recycle Bin
	SDU Size
	Server Name
	Server Process Type
	Service Name
	SID
	SSLLibName
	Support Binary XML
	TCP Keep Alive
	Timestamp Escape Mapping
	TNSNames File
	Trust Store
	Trust Store Password
	Use Current Schema for SQLProcedures
	User Name
	Validate Server Certificate
	Wallet Password
	Wire Protocol Mode

	Reference
	Code Page Values
	IANAAppCodePage Values

	ODBC API and Scalar Functions
	API Functions
	Scalar Functions
	String Functions
	Numeric Functions
	Date and Time Functions
	System Functions

	Internationalization, Localization, and Unicode
	Internationalization and Localization
	Locale
	Language
	Country
	Variant

	Unicode Character Encoding
	Background
	Unicode Support in Databases
	Unicode Support in ODBC

	Unicode and Non-Unicode ODBC Drivers
	Function Calls
	Unicode Application with a Non-Unicode Driver
	Unicode Application with a Unicode Driver

	Data
	Unicode Driver
	ANSI Driver

	Default Unicode Mapping
	Connection Attribute for Unicode

	Driver Manager and Unicode Encoding on UNIX/Linux
	References

	Character Encoding in the odbc.ini and odbcinst.ini Files

	Designing ODBC Applications for Performance Optimization
	Using Catalog Functions
	Caching Information to Minimize the Use of Catalog Functions
	Avoiding Search Patterns
	Using a Dummy Query to Determine Table Characteristics

	Retrieving Data
	Retrieving Long Data
	Reducing the Size of Data Retrieved
	Using Bound Columns
	Using SQLExtendedFetch Instead of SQLFetch
	Choosing the Right Data Type

	Selecting ODBC Functions
	Using SQLPrepare/SQLExecute and SQLExecDirect
	Using Arrays of Parameters
	Using the Cursor Library

	Managing Connections and Updates
	Managing Connections
	Managing Commits in Transactions
	Choosing the Right Transaction Model
	Using Positioned Updates and Deletes
	Using SQLSpecialColumns

	Using Indexes
	Introduction
	Improving Row Selection Performance
	Indexing Multiple Fields
	Deciding Which Indexes to Create
	Improving Join Performance

	Locking and Isolation Levels
	Locking
	Isolation Levels
	Locking Modes and Levels

	SSL Encryption Cipher Suites
	DataDirect Bulk Load
	DataDirect Bulk Load Functions
	Utility Functions
	GetBulkDiagRec and GetBulkDiagRecW

	Export, Validate, and Load Functions
	ExportTableToFile and ExportTableToFileW
	ValidateTableFromFile and ValidateTableFromFileW
	LoadTableFromFile and LoadTableFromFileW

	DataDirect Bulk Load Statement Attributes
	SQL_BULK_EXPORT
	SQL_BULK_EXPORT_PARAMS

	Threading
	WorkAround Options

	Index

